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ABSTRACT 

There is a significant need for more effective treatments for neurological and 

psychiatric diseases. Implantable neurostimulators are increasingly used as new 

therapeutic options for these diseases. This work will discuss our approach to mitigate 

current limitations in two types of implantable neurostimulators: Deep brain stimulation 

in treating Parkinson’s disease and cortical prosthetics in vision. 

Deep brain stimulators (DBS) are typically configured to deliver therapeutic 

stimulation constantly, which can produce unavoidable side-effects and needlessly 

drains power. Modulating stimulation adaptively, or closed-loop stimulation, could 

mitigate these issues but requires methods to accurately read physiologically relevant 

brain states, preferably using only the already implanted electrodes. Another class of 

implanted neurostimulators, cortical prosthetics, rely on accurate predictions of neural 

activity in the targeted brain area for arbitrary stimuli. Current models used to predict 

neural activity in primary visual cortex only achieve 35% predictability overall and 

predictability declines in subsequent areas of visual processing. 

With a focus on DBS and cortical prosthetics, we highlight how deep artificial 

neural network (ANN) models can be leveraged as a tool in neuroscience for studying 

neural encoding and decoding. We apply an ANN model trained using supervised 
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learning to decode sleep state continuously from “spectral fingerprints” contained in 

local field potential activity of DBS electrodes. Furthermore, we show that deep 

convolutional neural networks can be used to make more accurate predictions of 

cortical neural encoding of visual stimuli in both early (primary visual cortex) and late 

(inferior temporal cortex) stages of visual processing. 

 

The form and content of this abstract are approved. I recommend its publication. 

Approved: Joel Zylberberg 
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CHAPTER I 

INTRODUCTION 

Neurological and psychiatric disease represent a significant societal burden in 

both advanced and developing countries (Collins et al., 2011) and there is a significant 

need for more effective treatments. Recent advances in brain stimulation and recording 

technology have enabled development of long-desired treatment options for many of 

these diseases in the form of implantable devices that directly stimulate populations of 

neurons. Deep brain stimulation (DBS) is one of these implantable devices utilized to 

mitigate disease symptoms. Patients with DBS receive electrical pulses via electrodes 

implanted in their brain. DBS has become an established therapy for movement 

disorders (Parkinson’s Disease (PD) and essential tremor) (Perlmutter and Mink, 2006) 

as well as epilepsy and psychiatric diseases (Holtzheimer and Mayberg, 2011). Another 

group of implantable neurostimulators are neural interfaces, such as cortical 

prostheses, which aim to restore sight in patients with congenital or acquired blindness. 

The body of work presented here makes progress on two unsolved challenges limiting 

advances in implantable neurostimulators, namely DBS state detection and more 

accurate cortical encoding of visual stimuli. 

Deep Brain Stimulation 

DBS uses a surgically implanted stimulator to apply electrical pulses directly to 

the brain to mitigate symptoms of neurologic and psychiatric diseases. Historically, 

drugs have been the primary method of treating these diseases, but DBS has emerged 

as a promising alternative for patients who do not respond to pharmacotherapy. 
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Parkinson’s disease (PD) was among the first FDA approved uses of DBS for mitigating 

the disease’s motor symptoms. When employed for treating PD, current best practice 

for DBS therapy uses constant stimulation even though its therapeutic benefits to motor 

symptoms are needed most when the patient is awake to suppress resting tremor or 

bradykinesia in movement initiation. Current implanted stimulators are used this way 

because they have no way to detect when stimulation is not needed, such as when the 

patient is asleep or when lower levels of stimulation are needed to correct resting 

tremor. This strategy of constant stimulation, or open-loop stimulation, is less power 

efficient and comes with side effects such as impaired cognition, speech, gait, and 

balance (Hariz et al., 2008). However, activating DBS stimulation only when necessary 

requires a robust method for discerning whether or not the patient's brain needs 

stimulation. For example, a closed-loop DBS system would read out the patient’s brain 

state and only deliver electrical pulses during periods when the patient is awake (Figure 

1.1). Closed-loop DBS is more power efficient and would have less collateral side 

effects by only stimulating when necessary. 

Neural Interfaces 

Cortical prosthetics (Fig 1.2) are a form of neural interface used to restore sight 

in blind patients (Lorach et al., 2013). These implantable neurostimulators bypass lost 

or damaged neurons by stimulating the damaged neuron targets the same way the 

original neurons otherwise would. Cortical prostheses must reproduce the neural activity 

patterns that would typically be relayed naturally by neurons of the thalamic lateral 

geniculate nucleus (LGN) and retina when directly stimulating visual cortex. Neural 
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encoding, our understanding of how neurons reformat and represent visual stimuli, is 

key to this goal of properly restoring sight. The ultimate test of our knowledge of neural 

encoding is to predict neural responses to stimuli. Unfortunately, current models of 

neural encoding still struggle to accurately predict neuron responses to natural image 

stimuli. Subsequent sections will review two distinct approaches to developing models 

capable of predicting cortical responses to visual stimuli: bottom-up encoding models 

and top-down encoding models. 

Bottom-up neural encoding models  

Bottom-up encoding models use experimentally derived properties to explain 

responses in later visual areas. Neurons in early stages of visual processing can be 

characterized by their response to very specific local features in an image. A visual 

processing neuron’s receptive field (RF) is useful for depicting the properties of an 

image that modulate the neurons activity. RF’s are typically represented in models by 

linear filters applied at the first stage of processing. The inner product (i.e. dot product) 

between the filter and corresponding image region predict a given neurons response to 

that image. The linear RF model was insufficient for predicting several non-linear 

properties of retinal ganglion cell (RGC) responses to white noise and even worse for 

more complex stimuli. Subsequent Linear-Nonlinear-Poisson (LNP) (Paninski et al., 

2004) models were better predictors of RGC spike rates in responses to white noise 

image stimuli. LNP combines a linear spatial filter with a single static non-linearity. The 

LNP model predicts neural responses well for white noise stimuli but does not 

generalize well when used to predict responses to natural image stimuli. Generalized 
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Linear Models (GLM) (Pillow et al., 2008) improve prediction accuracy by accounting for 

interactions between RGC’s. 

Top-down neural encoding models 

As opposed to bottom-up neural encoding models, top-down models attempt to 

explain neural encoding as a result of optimizing an overarching goal. The genome 

likely has insufficient capacity for specifying every neuronal connection (synapse) 

(Zador, 2019) so what mechanisms ensure that neurons are connected correctly? This 

has recently been referred to as the “brain wiring problem” (Hassan and Hiesinger, 

2015). We’ll be looking specifically at how synaptic wiring is determined in the visual 

cortex. Before the eyes even open, molecular interactions and spontaneous activity of 

RGC’s guide development of the initial “coarse” connectivity between RGC’s in the eye, 

to the neurons of the lateral geniculate nucleus in thalamus (LGN) and on to the primary 

visual cortex (V1) (Del Rio and Feller, 2006; Katz and Shatz, 1996). After this retinotopic 

map is established, synaptic connectivity continues refinement but requires 

environmental stimuli (Pietro Berkes et al., 2011). Identifying this “unifying principle” that 

guides stimulus-dependent refinement of connectivity would help explain the structure 

of visual representations in V1 and beyond. 

Sparse coding 

Shortly after the discovery of simple and complex cells (Hubel and Wiesel, 1959), 

Horace Barlow proposed efficient coding (Barlow, 1961) as an explanation for the 

computations performed by neural circuits in sensory cortex. The efficient coding 

hypothesis posits that the overarching goal of sensory processing is to reduce the high 
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information redundancy in stimuli from the physical environment. This view was 

strengthened by findings that the Gabor-like receptive fields of simple cells are an 

optimal basis set for natural scenes when optimizing for 1) representation sparsity and 

2) image reconstruction (D. Field, 1987; Olshausen and D. J. Field, 1996). Due to the 

highly metabolic nature of neurons, sparse coding was proposed because of its 

metabolic and information efficient properties (Levy and Baxter, 1996). Sparse coding 

models were particularly influential after successfully predicting aspects of neural 

computations in retina (Atick and Redlich, 1992), thalamus (Dan et al., 1996) and V1 

(Olshausen and D. J. Field, 1996).  

Optimizing for efficient coding would predict information redundancy should 

decrease as it is processed and relayed by successive visual areas. Information 

redundancy decreases when the same information can be carried by fewer neurons, 

which occurs as visual information propagates from photoreceptors to RGCs and from 

retinal ganglion cells to the LGN in the thalamus (Figure 1.3). Instead of information 

redundancy decreasing, as would be predicted by efficient coding, anatomical evidence 

seems to indicate that information redundancy in primary visual cortex is likely higher 

than it is prior areas of visual processing (Barlow, 2001; Felleman and Van Essen, 

1991). Furthermore, despite some modest successes at explaining the complex 

response properties of V2 (the next visual area after V1) (Lee et al., 2008; Olshausen et 

al., 2001) subsequent findings (Pietro Berkes et al., 2009; Willmore et al., 2011) have 

shown that visual areas beyond V2 cannot be explained by the efficient coding 

hypothesis. Efficient coding alone as an objective is not sufficient for explaining 
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response properties of neurons in higher level visual areas like V4 and inferior temporal 

cortex (IT). 

Goal-directed convolutional neural networks 

Barlow, when reflecting later on his original idea makes a prescient statement, 

perhaps without knowing it: “We now need to step back and take a more global view of 

the brain’s task in order to see what lies behind the importance of recognizing 

redundancy” (Barlow, 2001). Neural networks which optimize behaviorally relevant 

tasks (Yamins et al., 2014) have shown state of the art performance at predicting 

neuronal activity across the ventral visual stream.  

 

Summary 

Chapter 2 provides an introduction to artificial neural networks (ANN), their 

similarities and differences to biological neurons, and the machine learning techniques 

used to train them which serves as a foundation for the technical chapters that follow. 

In Chapter 3 we demonstrate ANN models as a tool for decoding sleep state in 

real-time using only the signals available from intracranial DBS electrodes implanted in 

the basal ganglia of PD patients. Importantly, this model generalizes decoding to 

patients never seen by the model and may allow new ways to leverage implantable 

stimulators for therapeutic benefit. 

Chapter 4 explores the effects using composite loss functions (recognize and 

visualize) during training on both learned representations and task performance. This 

work was motivated by the observation that visual processing areas are reactivated 
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during visualization tasks indicating their dual role in visual processing and regenerating 

stimuli.  

Finally, Chapter 5 demonstrates the utility of neural network models and machine 

learning techniques as a way to explain response properties of individual neurons. We 

use a convolutional neural network (CNN) to achieve performance comparable to state 

of the art at predicting activity of individual neurons evoked by natural image stimuli in 

macaque V1. Furthermore, we use this model generatively to explain response 

properties of cells outside of Hubel and Wiesel’s simple- or complex-cell designations. 
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Figure 1.1 Current DBS systems use an open-loop design, where stimulation is delivered constantly without regard to 
the patient’s state. Closed-loop DBS system would read out the patient’s brain state to modulate stimulation intensity 
accordingly based on if the patient is awake, stationary, or moving to relieve symptoms of Parkinson’s Disease 
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Figure 1.2 Cortical Prosthetics. (A) Visual processing spans multiple brain regions, starting in the retina with retinal 
ganglion cells eventually progressing through primary visual cortex (V1) and inferior temporal cortex (IT). (B) Building 
a “camera-to-brain-translator” hinges on our ability to convert images or video into their equivalent cortical 
representations. We attempt to build better cortical encoding models using artificial neural networks, predicting 
neuron responses to images in V1 (Chapter 5) and IT (Chapter 4). 
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Figure 1.3 Channel capacity, the number of neurons carrying visual information, significantly varies along the ventral 
visual stream. Top axis denotes the estimated number of neurons in each area of visual processing in the ventral 
stream (Felleman and Van essen 1998). Bottom axis shows estimates of information through in bits/s at each area. 
Conveying the same information with reduced channel capacity is an example of reducing information redundancy. 
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CHAPTER II 

MACHINE LEARNING AND COMPUTATIONAL NEUROSCIENCE 

Artificial Neural Networks as a Model of Neural Computation 

Despite the importance of computers for conducting machine learning and 

computational neuroscience research both fields had origins long before contemporary 

transistor computers. In 1943, inspired by the “all-or-none” nature of neural activity, 

Warren McCulloch (neuroscientist) and Walter Pitts (logician) formalized a simple 

mathematical definition of a neuron (McCulloch and Pitts, 1943). McCulloch and Pitts 

neurons became the fundamental unit of artificial neural networks (ANN). These artificial 

neurons, often referred to as (artificial) units, reproduce several key properties of real 

neurons (Fig 2.1). Biological neurons receive input from many other neurons via 

connections (e.g. synapses) to its dendrites. These synaptic inputs are summated at the 

soma where the net dendritic input increases or decreases the neurons membrane 

potential (Fig 2.1A). If the net dendritic input shifts the membrane potential beyond a 

certain threshold (e.g. the threshold potential) the neuron will fire action potentials. 

Artificial Units 

Artificial units (Fig 2.1B) are the basic building block of artificial neural networks. 

Each artificial unit receives input represented as a sequence of inputs 𝑥! and each input 

has a corresponding synaptic weight 𝑤!. In the artificial unit 𝑧 loosely represents a 

neurons membrane potential by adding net dendritic input to a scalar bias term (𝑏) 

which is meant to represent the unit’s intrinsic excitability. Finally, the threshold non-

linear response of biological neurons is captured by passing 𝑧 through an activation 
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function (𝑔) which gives the unit activation 𝑎 which is meant to loosely analogize 

neuronal firing rate. 

𝑎 = 𝑔(z) = 𝑔 +	- (𝑤! × x!)
!

+ 𝑏	1 

Layers 

Just as the brain is comprised of more than one neuron, most models make use 

of many artificial units. Similar to the functional organization of the neocortex, artificial 

neural networks (ANN) group individual units together in groups typically referred to as 

layers (Fig 2.1C). The artificial units within a layer collectively operate on a shared input 

and the layer’s output consists the collective activations of its constituent artificial units. 

ANN layers in a model between the inputs (x) and final outputs (y) are often referred to 

as “hidden” layers. The layers of an ANN are often considered analogous to a 

population of neurons in regions of the brain which perform similar functions. For 

instance, primary visual cortex (V1) contains a population of neurons which receive 

visual inputs from the retina (relayed by LGN). As a population of neurons, V1 

processes this visual input and this processed visual information is then relayed to area 

V2 for subsequent processing and so on. 

Model archetypes 

Deep artificial neural network models typically have multiple layers stacked one 

after the other, such that the outputs of one layer become the inputs for the subsequent 

layer. Deep ANN models are often constructed for a specific purpose, or to perform a 

specific task. Models are often categorized based on purported task and the structure of 

the inputs it uses to accomplish this task. For instance, many computer vision 
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researchers train models which, given an image, categorize the object in the image. The 

work presented in this thesis makes use of three distinct types of neural network 

models: classifiers, regressors and autoencoders. We will cover these model 

archetypes briefly in the following sections. 

Classifiers 

Classifiers are a class of models that attempt to predict the best category that 

describes the input from a discrete number of categories. For example, a classic 

machine learning exercise has been to train a model to predict the category of an object 

depicted in an image. MNIST, Fashion-MNIST(Xiao et al., 2017), 

CIFAR10/100(Krizhevsky and Hinton, 2009; Krizhevsky et al., n.d.) and ImageNet are 

examples of large labeled image datasets that have been historically popular for 

evaluating a model’s classification performance. Classifiers are not specific image tasks 

and can be used on any discrete labeling task. For instance, in Chapter 3 we trained an 

ANN classifier to predict behavioral sleep state in human PD patients based on features 

from local field potential spectral decompositions. 

Regressors 

Regressors use their inputs and attempt to predict a continuous value 

purportedly derived from the input. Recently, neural network models have been used as 

functional models of the visual system. These models use images to predict neuronal 

firing rates observed in animals after viewing the same image and they have been used 

to successfully for predicting stimulus evoked activity in retina (McIntosh et al., 2016) 

and Inferior Temporal cortex (IT) (Yamins et al., 2014). We successfully utilized a 
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convolutional neural network regressor model to predict firing responses for populations 

of neurons in macaque primary visual cortex (V1) which is the subject of Chapter 5. 

Autoencoders 

Autoencoders are a special class of models which attempt to predict their inputs. 

This is a trivial task if each of the intermediate hidden layers have similar dimensionality 

as the input and output; the model can simply learn to copy the input into the output. 

Instead, these models are more often configured to have far fewer dimensions in their 

hidden layers. In this configuration the only way to successfully perform the task is to 

exploit information redundancy in the input to compress the input while retaining as 

much information as possible. We use an autoencoder in Chapter 4 to better capture 

the fact that the brain uses its representations for both recognition but also generatively 

in visualization. 

Architectures 

Training an ANN model using machine learning typically requires three 

components. These components are 1) the model’s layer architecture, 2) objective or 

loss function, and 3) the models learning rules. The layer architecture of a model 

explicitly specifies how the artificial units, organized in layers, are connected from input 

to output. There are a wide variety of layer types to choose from when constructing a 

deep ANN but for the sake of brevity only descriptions of layer architectures used in this 

work will be provided. 
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Fully connected 

Fully-connected layers are the simplest and oldest of layer architectures. In all-to-

all layers, every input is connected to every unit in the layer. We can describe this ANN 

layer mathematically by vectorizing the previous equation wherein inputs and output 

firing rates are represented as vectors (𝒙! , 𝒂") instead of scalars (𝑥, 𝑎): 

𝒂" = 𝑔(𝒛") = 𝑔6𝒙! ∙ 𝒘!," + 𝒃": 

Hyperbolic tangent (tanh), sigmoid, or Rectified Linear Units (ReLU) are often used as 

activation functions (𝑔) but other more complex ones have also been introduced. 

Convolutional 

Convolutional layers have many parallels to (and were directly inspired by) the 

organization of the mammalian visual system. The early layers of visual processing are 

organized spatially, areas of field of view near each other are encoded near each other 

in RGCs, LGN, and V1 with nearly one-to-one correspondence. This matching 

topographic map is often referred to as retinotopic organization. Deeper layers than V1 

retain some of this retinotopy but progressively pool these features representing larger 

and larger receptive field areas. Convolutional layers convolve a series of spatial filters 

across their 2D inputs to output “feature maps” of patches in the image that match the 

filter. They typically operate on images that have been separated into three distinct 

channels (RGB) and normalized as a surrogate for processing steps in retina and 

thalamus (Dan et al., 1996). However, this is not a defining characteristic, networks are 

also often trained on grayscale or color images that have not been preprocessed at all. 
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Loss Function 

Loss or cost functions (	𝐽 ) are mathematical definitions of the goal of the learning 

system. The loss function is used to calculate a scalar metric quantifying the models’ 

task performance as a function of their output. Loss functions can take any form 

mathematically, but typically differentiable loss functions are preferred for more 

straightforward optimization. Reconstruction error (sum of squared pixel errors) has 

traditionally been used for training models which attempt to generate a particular image. 

As an example of one loss function we can express the sum squared pixel loss between 

a model’s output image (𝑦=) and the target reference (𝑦) as:  

𝐽(𝑦, 𝑦=) = 	-(𝑦 − 𝑦=)$	 

 

The target reference (𝑦) is sometimes referred to as the teaching signal. In supervised 

learning the teaching signal is supplied to train the network the right answer for each 

particular batch of training examples. 

Loss functions do not have to depend on a particular dataset or task. For 

instance, sparse coding models use activation sparseness and reconstruction error as 

their loss function to learn sparse representations. When minimized over images of 

natural scenes they learn to represent images using features that resemble localized 

receptive fields of simple cells in the primary visual cortex (Olshausen and D. J. Field, 

1996; Zylberberg et al., 2011) 
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Learning Rules 

Once a model’s architecture and loss function are specified “training it” is simply 

optimizing the parameters of each layer to improve its loss. The first algorithm for 

defining a method for iteratively updating the ANN model parameters to minimize loss 

was developed by Rumelhart (Rumelhart et al., 1986) and is still commonly used for 

training ANNs. We use this algorithm for training our models and it involves a simple 2 

step process: 

1) Forward pass: Use a batch of x input values to calculate the predicted outputs 

(𝒚@) 

2) Backpropagation: Use prediction error to update weights and biases 

 

To illustrate this process, we will derive it for a simple 2-layer ANN. For simplicity, 

we change notation when describing deep ANN with multiple layers such that variable 

and function subscripts denote the variable or function’s corresponding layer NOT 

matrix or vector dimensions. For instance, we define the output activations at layer L in 

a model comprised of sequentially stacked all-to-all layers as: 

𝒂% = 	𝑔(𝒂%&' ∙ 𝑾% + 𝒃%) 

 
Forward Pass 

First, we pass a batch of training example inputs (x) through the model to get a 

batch of outputs (𝒚@). Given our simple feedforward layer defined above, the full equation 

for the models output is given by: 

𝒚@ = 	𝑔(𝑾$ ∙ 𝑔(𝑾' ∙ 𝒙 + 𝑏') + 𝑏$) 
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For simplicity, we will combine all trainable parameters in this model into a variable  

𝜃 = {𝑾$,𝑾', 𝑏$, 𝑏'} 

Our loss function (	𝐽 ) defines how to evaluate the model’s performance as a 

function of the model’s predicted and target values. The target value is also sometimes 

referred to as the teaching signal, as it is used to teach the model the correct output for 

a given input. For this example, we’ll use sum-squared-error: 

𝐽(𝑦, 𝑦=) = 	-(𝑦 − 𝑦=)$	 

Backpropagation 

To derive the gradient of the loss function with respect to the model parameters 

(∇(J) we take a partial derivative of the loss function with respect to the model 

parameters: 

∇(J = 	
𝜕𝐽(𝜃; 𝑦, 𝑦=)

𝜕𝜃  

Optimizers 

Once we know the gradient of each weight with respect to the loss, we simply 

need to adjust the weights of the model in the direction specified by the weight gradient. 

Continually descending the gradient of the loss function should result in reaching a 

minimum of the loss for performing the model’s task but may not be the global 

minimum. 
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Stochastic Gradient Descent 

Stochastic Gradient Descent (SGD) is the simplest and oldest optimization 

algorithm. Model parameters 𝜃, are iteratively updated by subtracting the parameter 

gradient scaled by a learning rate 𝜂 according to the following equation 

𝜃 ≔ 𝜃 − (𝜂 ∙ 𝛻(𝐽) 

 

SGD optimization with momentum 

Standard SGD works well if the surface of the loss function is smooth but has 

difficulty navigating “ravines” (the1986, n.d.) which are common near local minima in 

optimization problems. Momentum (Qian, 1999) is a solution to this issue wherein a 

fraction 𝛾 of the previous update is added to the current weight update. This 

modification helps SGD accelerate in the relevant descent direction.  

𝑣) = 𝛾 ∙ 𝑣)&' + (𝜂 ∙ 𝛻(𝐽) 

𝜃 ≔ 𝜃 − 𝑣) 

Picture a boulder accumulating speed as it rolls down a hill. Progressively increasing for 

dimensions gradient direction stays the same and reduces weight updates if the 

gradient direction changes. 

ADAM optimization 

Adaptive Moment Estimation (ADAM) computes adaptive learning rates for each 

parameter. If momentum is a ball rolling down a hill, ADAM optimization is a heavy ball 

with friction. It accomplishes this by computing decaying averages of past and past 

squared gradients (𝑔) , 𝑔)$). 

𝑚@) = 𝛽'𝑚)&' + (1 − 𝛽')𝑔) 
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𝑣=) = 𝛽$𝑣)&' + (1 − 𝛽$)𝑔)$ 

𝜃)*' ≔ 𝜃) −
𝜂

Q𝑣=) + 𝜖
𝑚@) 

 

Summary 

The purpose of this chapter is not to exhaustively cover the field of machine 

learning but instead to serve as a brief primer of concepts and terms you will encounter 

in subsequent chapters. Chapter 2 uses an ANN classifier comprised of fully-connected 

layers to predict sleep states from LFP spectral decompositions. Chapter 3 utilizes a 

convolutional autoencoder/classifier hybrid model to test hypotheses about 

computational objectives employed in primate ventral stream visual representations. 

Finally, Chapter 4 uses a convolutional neural network (CNN) to directly regress 

neuronal activity in macaque primary visual cortex. 

Hopefully, you can appreciate the similarities between artificial neural networks 

and the biological neural networks that inspired them. If nothing else, remember that 

using machine learning to train ANN models hinges on three components:  

1) Model architecture  

2) Loss function  

3) Learning rules 

All three components influence both transient and final model performance. 
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Figure 2.1 (A) Connected neurons in the brain are the substrate of neural computation in brains. The connections 
between each neuron varies according to the strength of the synapse. Net dendritic input from other neurons is 
summated at the soma of the neuron. If the neuron is sufficiently depolarized at the soma it will fire an action potential 
down its axon. (B) Connected neurons are modeled in artificial neural networks by individually weighting each input 
and summing them capture net input, z, to the artificial unit. This net input is passed through a non-linear activation 
function, g, such as linear rectification or a sigmoid to capture the all-or-nothing behavior of biological neurons. (C) 
Individual units are grouped into layers. In a fully-connected layer, weight of each input, x, for each unit, h, is captured 
in the weight matrix W1. These unit activations form the inputs to subsequent layers, y, which have their own set of 
weights, W2. 
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CHAPTER III 

PREDICTING SLEEP STATES IN HUMAN PARKINSON’S DISEASE 

PATIENTS1 

Introduction 

Sleep is crucial to the regulation of physiological and cognitive functions in 

humans, and when disordered greatly diminishes quality of life (Giuditta et al., 1995; 

Pace-Schott and Hobson, 2002) and adversely affects nervous system repair (Brager et 

al., 2016; Lucke-Wold et al., 2015). Parkinson's disease (PD) is a neurodegenerative 

disorder that exhibits a high degree of comorbidity with a wide range of sleep disorders 

(De Cock et al., 2011; Tekriwal et al., 2017). The diagnosis and treatment of PD 

primarily focus on the overt motor symptoms (Postuma et al., 2015). However, there is 

increasing interest in understanding the impact of non‐motor symptoms, such as sleep 

dysfunction, on overall disease burden (Chaudhuri et al., 2006), and in identifying 

treatments for these symptoms. With the onset of motor fluctuations or breakthrough 

tremor despite optimal medical management, subthalamic nucleus (STN) deep brain 

stimulation (DBS) surgery has become the reference standard for treating the motor 

symptoms of advanced PD (Bronstein et al., 2011; Hamani et al., 2004). Interestingly, 

several studies have found that STN‐DBS can improve sleep in PD (Arnulf et al., 2000; 

De Cock et al., 2011; Iranzo et al., 2002). In our previous work, using local field 

potentials (LFPs) recorded from DBS electrodes implanted in STN for the treatment of 

PD, we identified unique spectral patterns within STN oscillatory activity that correlated 

 
1 This chapter was previously published in Christensen, Abosch, Thompson, and Zylberberg (2019)  Journal of Sleep 
Research 28:e12806 and are included with the permission of the copyright holder. 
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with distinct sleep cycles, a finding that might offer insight into sleep dysregulation 

(Thompson et al., 2017). One extension of this work was to determine whether LFP 

information recorded from the STN could be used in real time to objectively identify 

sleep cycles for targeted therapy using DBS. In other words, the sleep benefit derived 

from STN stimulation could potentially be optimized using an adaptive stimulation 

algorithm that is aimed at specific sleep stages. In this study, we demonstrate the use of 

a feedforward artificial neural network that predicts sleep stage from LFP recordings, 

within the STN, with high precision. 

Materials and Methods 

Patient Demographics 

This study was approved by the Institutional Review Board of the University of 

Minnesota, where the surgical and recording procedures were performed. All 

consenting study subjects (n = 9) carried a diagnosis of idiopathic PD (Figure 3.1a). 

Subjects were unilaterally implanted in the STN with a quadripolar DBS electrode 

(model #3389: Medtronic Inc., Fridley, MN), per routine surgical protocol (Abosch et al., 

2012). Experimental details for the recording setup have been previously published 

(Thompson et al., 2017). Basic characterization of these data was previously reported in 

Thompson et al. (2017). 

 

Signal processing and local field potentials 

Signal processing of the raw STN LFP signals was previously described in 

Thompson et al. (2017). Briefly, after preprocessing, the four LFP channels (0, 1, 2 and 
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3; one recording from each of the four electrical contacts of the implant) were converted 

into three bipolar derivations (LFP01, LFP12 and LFP23) by sequentially referencing 

them. Power spectral density (PSD) was estimated using a fast Fourier transform from a 

2‐s‐long sliding window (Hamming) with 1‐s overlap. The final time‐evolving spectra had 

15 s time and 0.5 Hz frequency resolution. For each subject, LFP data selected for 

further analysis were based on the location of the DBS electrode contact within the STN 

and this was verified by the following: (a) intraoperative microelectrode recordings that 

identified cells with firing characteristics consistent with STN neurons; (b) anti‐

Parkinsonian benefit and side‐effects of macrostimulation; (c) preoperative stereotactic 

T1‐ and T2‐weighted images merged to a postoperative MRI demonstrating the position 

of the DBS electrode within the borders of STN; (d) the use of Framelink (Medtronic 

Corp.) software to analyze DBS position on the postoperative MRI; and (e) evaluation of 

the efficacy of post-programming stimulation for contralateral motor symptoms for each 

subject (Ince et al., 2010). Selection of which contact(s) to use for study recordings was 

based on the STN contact (s) associated with peak beta‐spectrum activity as this 

feature correlates with the optimal programming contact(s) for the treatment of 

contralateral motor symptoms (Ince et al., 2010). These criteria were used to ensure 

that the selected contact was most reliably in the same relative anatomical location 

across patients to permit generalizability of the model. 

Video‐PSG scoring 

The polysomnographic electrode montage used was the following: F3–C3, P3–

O1, F4–C4 and P4–O2, EOGL–A2, EOGR–A1, and chin EMG (Iber et al., 2007). Sleep 
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stages were determined by analysis of 30‐s epochs of the PSG, by a sleep neurologist, 

with each epoch classified as Awake or as belonging to one of the following sleep 

stages: rapid eye movement (REM), or the non‐REM (NREM) stages of N1, N2 or N3. 

Model description 

We trained a feedforward artificial neural network (ANN) with a single hidden 

layer (Figure 2b) to prospectively identify whether a given 30‐s epoch of STN‐LFP 

recording took place during one of three possible states: REM, NREM or Awake. Inputs 

to the model were eight separate frequency band power bins, averaged over 30 s: delta 

(0–3 Hz), theta (3–7 Hz), alpha (7–13 Hz), low beta (13–20 Hz), high beta (20–30 Hz), 

and low gamma (30–90 Hz), high gamma (90–200) and high frequency oscillations 

(200–350). Each frequency range input feature was normalized independently by 

subtracting the mean and scaling by the variance of feature. The ANN output is a 

probability that the measured epoch occurs during one of the three possible states. 

Optimal ANN architecture was chosen based on the hyperparameter optimization 

detailed below. The ANN model utilizes a single hidden layer to encode the normalized 

spectral power bands within 32 features by calculating weighted sums of the input 

frequency power and scaling them by a non‐linear function. Weighted linear 

combinations of these 32 features are then used by the network to compute sleep state 

probabilities with application of a softmax non‐linearity. 

Hyperparameter optimization 

The architecture of the ANN model we describe was determined by evaluating 

classification accuracy across the spectrum of network hyperparameters. We 
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combinatorically varied the non‐linearity of each unit (Sigmoid, ReLu and Tanh), the 

number of units in the hidden layer(s) (16, 32 or 64) and the number of hidden layers (1 

or 2). Randomly initialized models in replicates of five were each trained and tested on a 

random 80:20 partition of all data. In general, we observed that more complex models 

with a larger number of total units and multilayer networks produced minor increases in 

classification accuracy, but these performance variations were not statistically 

significant. We opted to use 32 units in a single hidden layer with the biologically‐

inspired rectified linear units (ReLu; (Hahnloser et al., 2000) ) as the non-linearity. We 

chose this configuration because it achieved classification accuracy on a par with the 

best‐performing model with 10‐fold fewer parameters to minimize overfitting training 

data. 

Results 

Model performance and validation 

We evaluated the ANN model's sleep stage classification performance and its 

ability to generalize new predictions under two conditions. Performance was evaluated 

using accuracy and Cohen's κ. Chance accuracy was calculated as originally described 

(Cohen, 1960). 

First, we tested the model's ability to predict sleep stages on novel examples 

from patients included in the training set. We pooled 80% of each patient's 30‐s STN‐

LFP recording epochs across all nine patients to train the model. The remaining 20% of 

the withheld epochs were used to evaluate the model's performance on novel examples 

from familiar patients. The train‐test fractions (80:20) were sampled randomly for each 
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patient and performance was averaged in replicates of five to prevent sampling bias. 

The model was able to correctly predict sleep stage from STN‐LFP epochs with a mean 

accuracy of 91% (Figure 3.3a). 

Training a model from scratch for each new patient is often intractable. 

Therefore, the model's ability to perform well on never‐ seen subjects demonstrates its 

sensitivity to the salient spectral features of sleep across individual variations. To test 

this level of generalization, the model was trained on all epochs from eight of the nine 

patients. Subsequently, model performance was evaluated on all epochs from the kept‐

out patient. Thus, nine different models were trained, each with a specific patient 

withheld from its training data. As above, model performance was quantified using 

accuracy and Cohen's κ (Figure 3.3b). Across all models, mean classification accuracy 

of 91% was observed. Finally, because the number of epochs of each observed sleep 

state varies between patients in the dataset, we produced confusion matrices for the 

test patient of each model and show representative examples from patients with 

significantly imbalanced sampling as well as a summary matrix averaged across all 

models (Figure 3.3c). This demonstrates that the model's error rate varies as a function 

of sleep‐ stage representation, with less frequent stages showing a higher error rate 

(see Table 3.1). 

Discussion 

In this report, we demonstrate the novel use of an optimized ANN to predict sleep 

stage from 30‐s epochs of LFP recorded from the STN of PD subjects. Based on results 

from hyperparameter optimization, we used a network architecture of a single hidden 
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layer containing 32 artificial neurons with ReLu non‐linearities (Figure 3.2b). We 

evaluated the model's ability to generalize to new patients by using a LOGO (leave‐one‐

group‐out) strategy for cross‐validation and attained mean classification accuracy of 

91% averaged across all patients. 

The ability of this ANN model to accurately predict sleep stages based on STN‐

LFP data recorded from novel PD patients is a critical improvement over our previously 

published effort to generate a predictive model. In our prior work, we used a support 

vector machine (SVM) model that performed well when tested on novel epochs derived 

from the familiar patient used to train the model but failed to generalize to novel subjects 

(Thompson et al., 2017). For simplification of model development, the different NREM 

stages (i.e. NREM 1–3) were aggregated into a single class. However, future 

development will focus on classification of the non‐REM substages, as they represent 

distinct states and underlie unique sleep processes. Our current study is the first to use 

direct intracranial recordings from human basal ganglia to classify and match unseen 

PSG‐labelled electrophysiological signals. Although the overall accuracy of the model 

for all sleep stages combined was well above chance (91%), performance on REM 

sleep stages was lower than the average performance (77%). Decreased performance 

for REM could be a result of the lower representation across subjects (see Table 3.1), 

or it may reflect the challenge in identifying the REM state from PSG in this patient 

population. This model can be implemented in forthcoming improved DBS 

neurostimulators to detect sleep stage solely from features of STN‐recorded LFP, 

enabling the implementation of closed‐loop stimulation strategies for treating sleep 
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dysregulation in PD patients. This would serve a crucial unmet need in this patient 

population (Chaudhuri et al., 2006), as there are currently no effective treatments with a 

low side‐effect burden(Arnulf et al., 2000). Although DBS is an established therapy for 

the treatment of motor symptoms of Parkinson's disease, the effect of DBS on the sleep 

disturbances of Parkin- son's disease has not yet been fully characterized, and the 

mechanism(s) underlying the improvements reported in sleep quality, efficiency and 

duration remains to be elucidated(Sharma et al., 2018). 

Our model's ability to correctly predict sleep stage in novel subjects may imply 

the existence of a universal LFP spectrum sleep signature within STN. In our 

investigations to date, this STN localized spectral signature appears conserved across 

patient demographics, robust to variances in implantation location, and detectable from 

the aggregate activity of several thousands of neurons. In future work, we intend to 

characterize this spectral signature space using generative ANN models of LFP 

oscillations recorded from within the STN. This effort will extend our understanding of 

the relationship between sleep dynamics and oscillating field potentials in the basal 

ganglia. 

  



 30 

 

Figure 3.1 (a) Demographic data and sleep stage characteristics for Parkinson's disease (PD) subjects participating 
in this study (n = 9). Percent improvement in PD reflects the change in the Unified Parkinson's Disease Rating Scale 
(UPDRS) motor scale before and after DBS surgery. (b) Hypnograms from four representative subjects in this study, 
indicative of common sleep architecture deficits reported for individuals with PD. (c) Distribution of frequency band 
power contribution to sleep stage for all subjects. AWM, awake with movement; AWOM, awake without movement; 
REM, rapid eye movement 
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Figure 3.2 (a) Representative spectrogram of a local field potential (LFP) recording acquired over the course of one 
full night's sleep from a deep brain stimulation (DBS) electrode implanted into the subthalamic nucleus (STN). A 
PSG‐ informed hypnogram assessed by a sleep expert is aligned with the LFP recordings (red line; AWM, awake with 
movement; AWOM, awake without movement; REM, rapid eye movement; N1–3, non‐rapid eye movement stages 1–
3). (b) Schematic representation of the feedforward classifier used to predict sleep stage from 30‐s labelled LFP 
epochs. The model is composed of an input layer (LFP frequency power bands), a hidden layer and an output layer 
(predicted sleep stage). (c) Comparison of hypnogram assessed by a sleep expert (top; black) and ANN‐ predicted 
hypnogram (bottom; red) from patient 1 with mean classification accuracy of 87% 
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Figure 3.3 (a) In the “hybrid” strategy a random 80% of each patient's local field potential (LFP) recordings were 
pooled to train the model. Model accuracy and Cohen's κ were evaluated on the withheld 20% from each patient. 
This analysis was replicated in four other random 80:20 splits to control sampling bias. Cohen's κ magnitude 
guidelines derived from Fleiss & Cohen (1973). (b) A leave‐one‐group‐out (LOGO) cross‐validation strategy was used 
to test generalizability to unseen patients. Each data point represents a model trained with a specific patient excluded 
from its training data. Model accuracy and Cohen's κ were evaluated on data from the kept‐out patient. (c) Confusion 
matrices of representative models trained using the LOGO cross‐validation strategy. The first two confusion matrices 
represent individual subjects and the final confusion matrix depicts the fraction of epochs with specific class labels for 
all subjects. REM, rapid eye movement; NREM, non‐rapid eye movement 
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Table 3.1 Summary for all subjects of the epoch representation and model accuracy for each of the following sleep 
stages: Awake, rapid eye movement (REM) and an aggregate of the non‐rapid eye movement (NREM) substages 
(N1, N2 and N3) 
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CHAPTER IV 

MODELS OF VENTRAL STREAM THAT CATEGORIZE AND VISUALIZE 

IMAGES 

Introduction 

The ventral stream (VS) of visual cortex begins in primary visual cortex (V1), 

ends in inferior temporal cortex (IT), and is essential for object recognition. Accordingly, 

the long-standing belief in the field is that the ventral stream could be understood as 

mapping visual scenes onto neuronal firing patterns that represent object 

identity(Felleman and Van Essen, 1991). Supporting that assertion, deep convolutional 

neural networks (DCNN’s) trained to categorize objects in natural images develop 

intermediate representations that resemble those in primate VS (Cadieu et al., 2014; 

Güçlü and van Gerven, 2015; Yamins et al., 2014; Yamins and DiCarlo, 2016). 

However, several recent findings appear at odds with the object recognition hypothesis. 

VS and other visual areas are also engaged during visualization of both prior 

experience and novel scenes (O'Craven and Kanwisher, 2006; Stokes et al., 2009), 

suggesting that the VS can generate visual scenes, in addition to processing them as 

inputs. Furthermore, non-categorical information, about object positions, sizes, etc. is 

also represented with increasing explicitness in late VS areas V4 and IT(Hong et al., 

2016). This is not necessarily expected in a “pure” object recognition system, as the 

non-categorical information is not necessary for the categorization task. Thus, these 

recent findings challenge the long-held object recognition hypothesis of ventral stream 
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and raise the question: What computational objective best explains VS physiology? 

(Richards et al., 2019)  

To address that question, we pursued a recently-popularized approach and 

trained deep neural networks to perform different tasks: we then compared the trained 

neural networks’ responses to image stimuli to those observed in neurophysiology 

experiments(Cadieu et al., 2014; Chen and Crawford, 2019; Güçlü and van Gerven, 

2015; Yamins et al., 2014), to see which tasks yielded models that best matched the 

neural data. We trained our networks to perform one of two visual tasks: a) recognize 

objects; or b) recognize objects while also retaining enough information about the input 

image to allow its reconstruction. We studied the evolution of categorical and non-

categorical information representations along the visual pathway within these models, 

and compared that evolution with data from monkey VS. Our main finding is that neural 

networks optimized for task (b) provide a better match to the representation of non-

categorical information in the monkey physiology data than do those optimized for task 

(a). This suggests that a full understanding of visual ventral stream computations might 

require considerations other than object recognition. 

Materials and Methods 

Dataset and augmentation 

We constructed images of clothing items superimposed at random locations over 

natural image backgrounds. To achieve this goal, we used all 70,000 images from the 

Fashion MNIST dataset, a computer vision object recognition dataset comprised of 

images of clothing articles from 10 different categories. We augmented this dataset by 
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expanding the background of the image two-fold (from 28x28 pixels to 56x56 pixels) 

and drawing dx and dy linear pixel displacements from a uniform distribution spanning 

75% of the image field {-11,11}. Images were then shifted according the randomly 

drawn dx and dy values. After applying positional shifts, the objects were superimposed 

over random patches extracted from natural images from the BSDS500 natural image 

dataset to produce simplified natural scenes which contain categorical (1 of 10 clothing 

categories) and non-categorical (position shifts) variation. Random 56x56 pixel patches 

from the BSDS500 dataset were gray scaled before the shifted object images were 

added to the background patch (Figure 4.1A). All augmentation was performed on-line 

during training. That is, every position shift and natural image patch was drawn 

randomly every training batch instead of pre-computing shifts and backgrounds. This 

allows every training batch to be composed of unique examples from the dataset and 

prevents overfitting. 

Primate electrophysiology 

Neural recordings were originally collected by the DiCarlo lab (Majaj et al., 2015) 

and shared with us for this analysis. In brief, neural recordings were collected from the 

visual cortex of two awake and behaving rhesus macaques using multi-electrode array 

electrophysiology recording systems (BlackRock Microsystems). Animals were 

presented with a series of images showing 64 distinct objects from 8 classes rendered 

at varying eccentricity in the animal’s visual field. After spike-sorting and quality control 

this resulted in well-isolated single units from both IT (n=168) and V4 (n=128); higher-
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order areas in primate visual cortex. A full description of the data and experimental 

methods is given by Hong et al. (2016). 

 
 

Model architecture 

Non-convolutional models were constructed by sequentially combining all-to-all 

(aka densely connected) layers. Any given layer uses the previous layers’ output as 

input, multiplying the inputs (x) by a weight matrix (w) and adds a bias to each unit in 

the output. Finally, this value is passed through a nonlinear activation function. Each 

layer outputs an activation vector of its units (y) which is a function of its inputs (x). 

Objective functions and training parameters 

Models optimized for classification use categorical cross-entropy for the objective 

function. Categorical cross-entropy (XENT) is a commonly used objective function in 

machine learning to train neural network classifiers. Multilabel cross-entropy is 

calculated according to the equation below where M is the total number of classes. 

𝑋𝐸𝑁𝑇 = −-𝑦+ ⋅ ln	(𝑦=+)
,

+-'

 

Here, 𝑦+  is the true category label, represented as a one-hot vector, and 𝑦=+ is the 

network output obtained from the linear readout of population V (see Figure 4.1). 

Models with an objective function term for reconstructing the original input scene 

use pixel-wise sum of squared error (SSE) between the input and the generator’s output 

(x ̂). 

𝑆𝑆𝐸 = 	-(𝑥 − 𝑥=)$ 
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We trained each model in our experiment until classification accuracy plateaued 

on a validation dataset of 512 objects from the 10,000 test images in the fashion MNIST 

dataset. 

Model Evaluation 

After training performance plateaus, 192 randomly chosen unit activations from 

Layers 1-3 in the encoder model (Fig 4.1B) were used in comparisons with primate 

ventral stream electrophysiology. Unit activations were generated using a random 

sample from held out test images (not used during training). As in a (simulated) 

electrophysiology experiment, each image was input to the network, and the 

corresponding unit activations were recorded. We then analyzed these unit activations 

in the same way as we did the firing rates recorded in monkey visual cortex. 

We measured selectivity of our artificial neurons in the same way as Hong et al 

2016 (they call these measures “performance” instead of selectivity). For continuous-

valued scene attributes (e.g. horizontal position) we measured selectivity as the 

absolute value of the Pearson correlation between the neuron’s response and that 

attribute in the stimulus image. For categorical properties (e.g. object class) we 

measure selectivity as the one-vs-all discriminability (d’). 

We quantified the similarity of each models’ layer-wise selectivity to 

corresponding layers in primate ventral stream using Fisher’s Combined Probability 

Test (FCT). As discussed in the main paper, we first used the Welch’s unpaired t-test to 

calculate p-values model-VS pairs for all selectivity metrics in the corresponding layers, 

then used the FCT to combine those p-values into a single likelihood measure that 
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reflects the likelihood of observing the monkey physiology data, under the hypothesis 

that those data are drawn from the same distribution as the units computational model: 

a larger p-value corresponds to a model that more closely matches the monkey data. 

Results 

Computational models 

To identify the degree to which different computational objectives describe 

ventral stream physiology, we optimized computational neural network models for 

different objectives, and compared them to neural recordings from the primate ventral 

stream. Each computational model was constructed out of a series of layers of artificial 

neurons, connected sequentially. The first layer takes as input an image x and outputs 

at the final layer outputs a set of neuronal activities that represent the visual scene input 

(Fig 4.1B), including object identity. We refer to this output as the latent representation. 

The input images, x, consisted of images of clothing articles superimposed over natural 

image backgrounds (see Methods). Each image used a single clothing article rendered 

in a randomly chosen position and placed over a natural image background (Fig. 4.1A).  

The models each had a total of three layers of processing (corresponding to 

cortical areas V1, V2, ad V4) between their inputs and these latent representations; the 

latent representations correspond to area IT, for reasons we discuss below. The visual 

inputs to the model had normalized luminance values, mimicking the normalization 

observed in thalamic inputs to V1(Carandini and Heeger, 2011). The connectivity 

between neurons in each layer (and the artificial neurons’ biases) were optimized within 
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each model, so as to achieve the specified objective (see Methods). We repeated this 

process for two different objectives, yielding two different types of models.  

The first type of model was optimized strictly for object recognition: the 

optimization maximized the ability of a linear decoder to determine the identity of the 

clothing object in the visual scene from the latent representation. (This mirrors the 

observation that neural activities in area IT can be linearly decoded to recover object 

identity(Majaj et al., 2015)). The second type of model was optimized for two tasks 

simultaneously: the ability of a linear decoder to determine object identify from latent 

representation, and the ability of a decoder to reconstruct the object from the latent 

representation. (See Methods for details about the optimization procedure). We 

repeated this procedure with both convolutional, and non-convolutional neural network 

architectures, yielding a total of four models. 

In all cases, the models were optimized using sets of images containing 

randomly sampled objects, until their object classification performance saturated on a 

set of held-out validation images. Good performance on the categorization task was 

obtained in all models (Fig 4.1D). Having developed models optimized for these 

different objectives, we could evaluate how well each model matched observations from 

primate VS, and use that comparison to determine which computational objective 

provides the best description of primate VS. 

Comparisons to macaque electrophysiology 

To compare our neural network models to ventral stream physiology, we used 

the experimental data from a previously published study (see methods and (Hong et al., 
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2016) for details). These data consisted of electrode array recordings from areas V4 

and IT of monkeys that were viewing images; many neurons in each area were 

simultaneously observed. Within these data, we assessed each neuron’s selectivity for 

object identity, and for category-orthogonal image properties (e.g. horizontal object 

position), as in Hong et al (2016) (see methods). We performed this analysis for the 

monkey data, and for the artificial neurons in each layer of each of our computational 

models. We then compared the trends in image property selectivity displayed by 

primate VS neurons and units from each of our models along the visual processing 

pathway. 

In the primate VS, selectivity for both categorical and category-orthogonal scene 

attributes increased along the ventral stream (Fig 4.2A), as reported by Hong et al8. 

This indicates that both types of attributes are more explicitly represented in 

progressively deeper ventral stream areas. 

 Within our computational models, those models optimizing the composite 

objective showed the same trends observed in primate ventral stream neurons (Fig 

4.2C, 4.2E): both category and category-orthogonal properties of the visual scene are 

represented more explicitly with each subsequent layers of the model. This observation 

persisted for both the convolutional and the non-convolutional architectures. For 

contrast, models optimized solely for object recognition (without the image 

reconstruction component of the objective function) did not show consistent increases in 

position selectivity along the visual pathway (Fig 4.2B, 4.2D). Again, this observation 

held for both convolutional and non-convolutional model architectures.  
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Thus, models optimizing the composite objective function qualitatively 

recapitulate the trends in neuronal selectivity along the visual pathways better than do 

models optimized strictly for object recognition. This observation motivated us to 

quantify how well each model matched the primate VS data. To achieve this goal, we 

performed the following analysis on each computational model. First, we used unpaired 

t-tests to estimate the probability that there is no difference in object category selectivity 

between the primate IT data and the model’s latent representation. We then performed 

a t-test comparing the primate V4 category selectivity to the corresponding layer of the 

computational model. Next, we performed t-tests comparing the horizontal, and vertical, 

position selectivities in primate V4 and IT to the corresponding layers of the 

computational model. This procedure yielded 6 p-values, describing the probability that 

the model matched each of these attributes observed in the primate VS. Finally, we 

used Fisher’s method (Li et al., 2014) to combine those 6 p-values into a single number, 

that quantified the likelihood of there being no difference between the computational 

model and the primate VS. 

Comparing these likelihood values, we found that the convolutional models 

overall provided better descriptions of the primate VS than did the non-convolutional 

ones (i.e., they had higher likelihood values), and that the best model overall was the 

convolutional neural network optimized for the composite classify-and-reconstruct 

objective (See Figure 4.4). 
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Noise Robustness 

We found that the convolutional model, optimizing the composite objective 

(classify-and-reconstruct) best matched the depth-dependent increase in position 

selectivity seen in single unit activities recorded from primate ventral stream. This led us 

to ask whether there might be functional benefits for networks optimizing this composite 

objective function, as compared with ones that are just trained to classify their inputs.  

Further motivating this question, we note that previous work has shown that 

convolutional neural networks optimized for object recognition tend to perform poorly on 

object recognition tasks when the images are corrupted by noise. Specifically, 

classification performance has been seen to decrease significantly when networks are 

evaluated under noise conditions even marginally different from the conditions under 

which it was trained (Geirhos et al., 2018). This is different from the primate visual 

system, where object recognition performance is more robust to image noise, leading us 

to speculate that the convolutional networks trained for the composite classify-and-

reconstruct task – which provide the best match to primate VS data – might have 

classification performance that is more robust to image corruption than do the networks 

trained purely for object recognition. 

To test that hypothesis, we took each of our previously trained models, and 

measured their accuracy at categorizing the clothing objects in test images corrupted by 

increasing levels of additive pixel noise (see methods). Similar to previous work, the 

convolutional model trained purely for object recognition showed a decrease in 

performance as the noise level increased. For the convolutional model trained on the 
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composite task, the decrease in performance with increasing noise level was less 

severe. This suggests that, consistent with our hypothesis, there is a functional benefit 

to systems optimizing the composite objective over “pure” object recognition systems: 

their object recognition performance is more robust to noise. 

The same finding also holds for the non-convolutional model architectures, and 

they are overall more robust to image noise than are the convolutional ones. We 

repeated this analysis with multiplicative (instead of additive) pixel noise and made very 

similar observations (see Figure 4.5). This shows that our findings are not specific to the 

additive noise model. 

Discussion 

Here we report evidence that convolutional neural networks (CNNs) optimizing a 

two-part composite objective (recognize and visualize) describe the depth-dependent 

evolution of categorical and non-categorical information in primate VS better than do 

networks optimized for object recognition alone. This is unexpected, as prior work posits 

that networks optimized strictly for object recognition should form the best models of 

primate VS(Cadieu et al., 2014; Hong et al., 2016; Richards et al., 2019; Yamins and 

DiCarlo, 2016). Our results suggest that the evolution of category-orthogonal 

information along the visual pathway could require a different functional explanation. 

Moreover, consistent with previous work(Cadieu et al., 2014; Hong et al., 2016; 

Richards et al., 2019; Yamins and DiCarlo, 2016), our CNNs optimized for image 

classification resemble primate VS more closely than do non-convolutional models 

optimizing the same objective.  



 45 

Our findings may help reconcile discrepancies between the object recognition 

hypothesis of VS and results which appear at odds with this interpretation(Freud et al., 

2016; O'Craven and Kanwisher, 2006; Sereno and Lehky, 2011; Stokes et al., 2009), for 

example the finding that primate VS explicitly retains information not useful for object 

recognition(Hong et al., 2016). The composite objective promotes retention of both 

category and category-orthogonal information because both are necessary to 

reconstruct the stimulus.  

Importantly, we used a different method to compare our neural networks to the 

primate VS than have previous studies that compared the representational dissimilarity 

matrices (RDMs) for their models, with those of the primate VS(Cadieu et al., 2014; 

Hong et al., 2016; Richards et al., 2019; Yamins and DiCarlo, 2016). While RDMs assay 

the (dis)similarity (Nili et al., 2014) in how different images are represented by the 

models, or primate VS, our approach was to focus instead on the depth-dependent 

evolution of neuronal selectivity to categorical and non-categorial variations in the input 

images. That we came to a different conclusion than did prior studies -- E.g., that an 

objective other than pure object categorization could best describe the computations in 

primate VS – suggests that there could be aspects of visual computation that are not 

fully captured by RDM analysis. 

Furthermore, our findings suggest noise tolerance as another independent 

explanation for why the VS might use a composite computational objective. VS 

classification accuracy measured in humans tolerates noise corrupted images much 

better than DCNNs optimized for image classification alone(Geirhos et al., 2018). In 
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contrast, convolutional models optimizing the composite objective demonstrate better 

noise tolerance compared to identical models trained solely for classification (Fig 4.3). 

Importantly, improved noise tolerance occurs without having to augment training images 

with noise. These findings complement the expanding body of work to explain the 

neuronal computations in visual processing and have applications in the computer 

vision models that emulate them. 
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Figure 4.1 Overview. A) We constructed images of clothing items superimposed over natural image backgrounds at 
random eccentricities. B) We model the ventral stream as an encoder whose objective is to map input image (x) onto 
more abstract “latent” representations (D and V). In our models this entire latent space is represented by 70 artificial 
neurons (35 units in each of D and V) The generator network uses these latent representations (D and V) as input to 
reconstruct the object and its location within the scene. A separate linear decoder attempts to determine the object 
identity from the activities of the units in V. C) We trained both convolutional, and non-convolutional neural network 
architectures, on one of two tasks: object categorization (“classify”), or object categorization with concurrent image 
reconstruction. We note that, for the “pure” object recognition task, the generator network is superfluous. D) Neural 
networks with both architectures achieve comparable object recognition performance (accuracy) when using either 
classify-only and classify+reconstruct objective functions. This performance was assessed on held-out images, not 
used in training the networks. 
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Figure 4.2 Comparisons of selectivity for visual scene properties. A) Category and position selectivity of single units 
recorded from macaque ventral stream (see Methods and Hong et al. 2016). B&C) Selectivity of units in the fully 
trained convolutional models optimized under classify-only objective (categorical cross-entropy) and the composite 
classify+reconstruct autoencoder objective. D&E) Non-convolutional or “all-to-all” models were also trained on both 
classify-only and classify+reconstruct. We measured property selectivity of both categorical and continuous valued 
category-orthogonal properties on units in the multi-electrode array data and each layer of the computational model 
encoders. We defined selectivity for categorical information on each unit in the dataset as the absolute value of that 
unit’s discriminability (one-vs-all d-prime). We defined selectivity for continuous valued attributes (horizontal and 
vertical position) on each unit as the absolute value of the Pearson correlation coefficient. Unit activities for models 
were sampled using 10000 held out test images to generate activations at each layer of the model. For layers 
containing more than 192 units we randomly sampled 192 units for the analysis (to have a number of units similar to 
the number of IT units in the neural recordings). 
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Figure 4.3 Noise generalization properties of models. A) Additive gaussian noise (mean=0) was used to corrupt 
10,000 testing images at increasing levels. B) Each model (defined its architecture – convolutional or non-
convolutional -- and the objective on which it was trained) was evaluated on images corrupted with increasing levels 
of gaussian noise. We show the accuracy at categorizing the objects in the noise-corrupted images. These images 
were from a held-out dataset, not used in training the neural networks. C) Convolutional neural networks are more 
sensitive to noise than are non-convolutional ones; they show a larger decrease in accuracy with increasing noise 
variance. Adding a reconstruction component to the network objective reduces this sensitivity. Similar results were 
obtained with a multiplicative noise model (Fig. S2), indicating that this result is not sensitive to the specific type of 
noise that corrupts the images. 
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Figure 4.4 Fisher combined probability test. We used the FCT to compute the likelihood of each model’s category and 
position selectivity matching the data observations made in monkey ventral stream recordings. Those likelihoods (p-
values) are shown for each model. Higher p-values (taller bars) correspond to models that more closely match the 
neural data. 
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Figure 4.5 Noise generalization properties of models across noise types. Each model (defined its architecture – 
convolutional or non-convolutional -- and the objective on which it was trained) was evaluated on images corrupted 
with increasing levels of noise. A) Additive gaussian noise (mean=0) was used to corrupt 10,000 testing images at 
increasing levels. B) Multiplicative uniform noise ) was used to corrupt 10,000 testing images at increasing levels. Bar 
plots show the accuracy of each neural network model at categorizing the objects in those noisy images. C) We show 
the deterioration in accuracy at each noise level, for each model. This comparison shows that the convolutional 
neural networks are more sensitive to noise but adding a reconstruction objective appears to improve this sensitivity. 
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CHAPTER V 

PREDICTING SINGLE NEURON RESPONSES IN MACAQUE V12 

Introduction 

Our ability to see arises because of the activity evoked in our brains as we view 

the world around us. Ever since Hubel and Wiesel (Hubel and Wiesel, 1959) mapped 

the flow of visual information from the retina to thalamus and then cortex, understanding 

how these different regions encode and process visual information has been a major 

focus of visual systems neuroscience. In the first cortical layer of visual processing—

primary visual cortex (V1)—Hubel and Wiesel identified neurons that respond to 

oriented edges within image stimuli. These are called simple or complex cells, 

depending on how sensitive their responses are to shifts in the position of the edge. The 

simple and complex cells are well studied (David et al., 2004; Lehky et al., 1992; Montijn 

et al., 2016). However, many V1 neurons are neither simple nor complex cells, and the 

classical models of simple and complex cells often fail to predict how those neurons will 

respond to naturalistic stimuli (Olshausen and D. J. Field, 2005). Thus, much of how V1 

encodes visual information remains unknown. We use deep learning to address this 

longstanding problem. 

Recent advances in neural-recording technology and machine learning have put 

solving the V1 neural code within reach. Experimental technology for simultaneously 

recording from large populations of neurons— such as multielectrode arrays—has 

 
2 Portions of this chapter are previously published by Kindel, W; Christensen, E; and Zylberberg, J in (2019) Journal 
of Vision 19:29 and are included with the permission of the copyright holder. WK and JZ conceived the original 
project. EC and WK analyzed and interpreted the data. WK and EC drafted the manuscript. EC, WK, and JZ critically 
revised the manuscript. 
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opened the door to studying how the collective behavior of neurons encodes sensory 

information. Moreover, methods of machine learning inspired by the anatomy of the 

mammalian visual system, known as convolutional neural networks, have achieved 

impressive success in increasingly difficult image-classification tasks (Krizhevsky et al., 

2012; LeCun et al., 2015). Recently, these artificial neural networks have been used to 

study the visual system (Yamins and DiCarlo, 2016), setting the state of the art for 

predicting stimulus-evoked neural activity in the retina (McIntosh et al., 2016) and 

inferior temporal cortex(Yamins et al., 2014). Despite these successes, we have not yet 

achieved a full understanding of how V1 represents natural images. 

In this work, we present a convolutional neural network that predicts V1 activity 

patterns evoked by natural image stimuli. We use this network to predict the activity of 

355 individual neurons in macaque monkey V1, in which it represents the neural visual 

code for many neurons regardless of cell type. On held-out validation data, the network 

predicts firing rates that are highly correlated (CCnorm = 0.556 ± 0.015) with the neurons’ 

actual firing rates. This performance value is quoted for all neurons, with no selection 

filter. Performance is better for more active neurons: When evaluated only on neurons 

with mean firing rates above 5 Hz, our predictors achieve correlations of CCnorm=0.69 ± 

0.01 with the neurons’ true firing rates. Our deep network is overall more accurate than 

a library of other models used as a baseline for comparison. 
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Methods 

 

Experimental Data 

We used publicly available multielectrode recordings from macaque V1 

downloaded from the Collaborative Research in Computational Neuroscience website 

(http://crcns.org; Coen-Cagli, Kohn, & Schwartz, 2015). In these experiments, macaque 

monkeys were anesthetized and then presented with a series of images while the 

experimenters recorded the spiking activity of a population of neurons in V1 (Figure 

5.1A and 5.1B) with a multielectrode array. Each image was presented for 100 ms, and 

there was a 200-ms blank screen shown between images. These recordings were 

conducted in 10 experimental sessions with three different animals, resulting in 

recordings from a total of 392 spike-sorted neurons whose receptive fields were 

centered on the stimulus. In the publicly available data, both well- isolated single units 

and small multiunit clusters are present. In our main analysis, we consider all of these 

as neurons; we also separately performed an analysis in which we attempted to 

distinguish between the single neurons and the small multiunit clusters. That result is 

included in the Discussion. A full description of the data and experimental methods is 

given by Coen-Cagli et al. (Coen-Cagli et al., 2015). Unlike those researchers, who 

used selection criteria based on responses to visual stimuli and reported results from a 

subset of 207 neurons, we used no further selection criteria and used all 392 spike- 

sorted and centered neurons. We used 37 of these neurons from one experimental 

session to determine how to construct our network (its hyperparameters), and the 
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remaining 355 neurons to evaluate its performance. For each neuron n, we calculated 

the mean firing rate 𝐴..! evoked by each image i by averaging its firing rate across the 

20 repeated presentations of that image. The firing rates were calculated over a window 

from 50 to 100 ms after the image was presented, to account for the signal- propagation 

delay from retina to V1 (Figure 5.1D; V1 firing rates increase dramatically at; 50 ms after 

stimulus onset). We separately analyzed firing rates computed over a longer (100-ms) 

window, from 50 to 150 ms after stimulus onset; the results of that analysis are 

presented in the Discussion section. 

We analyzed the responses to 270 natural images circularly cropped with a 1º 

aperture (Figure 5.1B). All 392 neurons are centered such that the 1º image aperture 

fully contains every neuron’s receptive field. The full data set contains responses to 

natural and artificial stimuli, both full-size and cropped. We used only natural images 

because we are interested in the real-world behavior of the visual system, and we used 

only the cropped images because they have the same visual field as the grating stimuli 

that we used to characterize the neurons as either orientation selective or not. 

 

Model 

To construct our predictive network, we used a convolutional neural network 

(CNN) whose input is an image and whose output is the predicted firing rates of every 

neuron in a given experimental session. Prior to training the neural network, we down-

sampled the images using a nonoverlapping 2 x 2 window and cropped them to a size 

of 33 x 33 pixels. As shown in Figure 5.2, the network consists of a series of linear– 
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nonlinear layers. The first layer(s) performs local feature extraction on the image by 

sweeping banks of convolutional filters over the image and then applying a maximum 

pooling operation. These local features are then globally combined at the all-to-all 

layer(s) to generate the predicted firing rate for every neuron in that data session.1 

The number of each type of layer (convolutional with maximum pooling or all-to-

all) and the details about each layer (number of units, convolution stride, etc.) were 

optimized to maximize the accuracy of the neural-activity predictions on the 37 neurons 

recorded in the second experimental session. We did this using a combination of 

manual and automated searches, where the results of our manual search informed the 

range of the hyperparameter space for an automated random search (Bergstra and 

Bengio, 2012). A subset of the results from the manual search is shown in Figure 5.3A 

and 5.3B. In Figure 5.3A, the number of convolutional layers, the kernel size of the 

convolutions, the pooling stride, and the loss function are adjusted. During training, units 

are randomly silenced (dropped out), which is a commonly used method for preventing 

overfitting in neural networks (Srivastava et al., 2014). In Figure 3B, we take the best-

performing networks with one, two, and three convolutional layers and adjust the 

dropout keep rate. Using the best-performing set of parameters, we defined our best 

CNN, denoted CNN2 because it is a two-convolutional-layer network. We trained and 

evaluated CNN2 using the data from the remaining nine experimental sessions. 

For each experimental session, we trained our network using a cross-validation 

procedure where we randomly subdivided the given data set into a training subset (80% 

of the images and corresponding V1 activity patterns) and an evaluation subset (20% of 
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the images). We then trained all layers of our network using the TensorFlow Python 

package with the gradient-descent optimizer. Based on the results of our 

hyperparameter search, which showed that this loss function outperforms the alternative 

log-likelihood one, we attributed a loss 

𝐿. =
∑ 6𝑦.,! − 𝐴.,!:

$
!

𝑣𝑎𝑟!(𝐴.,!)
 

to each neuron (indexed by n), where i is the image index, 𝐴.,! the measured 

response, and 𝑦.,! the network’s predicted response. The neurons’ losses are summed, 

yielding the total loss used by the optimizer. To ensure that the performance 

generalizes, the training data were subdivided into data used by the optimizer to train 

the weights (66% of the images) and another small subset (14% of the images) to stop 

the training when accuracy stops improving (early stopping). To quantify the 

performance of the predictor, we compared the network’s predicted firing rates to the 

neurons’ measured firing rates using a held-out evaluation set. This set was used 

neither to determine the hyperparameters nor to train the weights in our neural network. 

We calculated the Pearson correlation coefficient CCCNN2 between the predicted and 

measured absolute firing rates for each neuron. Following the convention of Schoppe et 

al. (Schoppe et al., 2016), we scaled the Pearson correlation coefficient by its 

theoretical maximum value given neural variability to yield the normalized Pearson 

correlation coefficient 

CC.012344$ =	
CC567344$

CC258
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that we use to quantify our results. Thus, in principle, a perfect model can 

achieve CCnorm = 1. To compute CCmax, we followed a bootstrapping procedure (in 

contrast to Schoppe et al., 2016) where we generated fake data by drawing random 

numbers from Gaussian distributions with the same statistics as the measured neural 

data. For each neuron and image, we averaged over 20 of these values to obtain a 

simulated prediction. We then computed the correlation between these simulated 

predictions and the neurons’ actual mean firing rates to find the maximum correlation 

CC258 possible given the variability in stimulus-evoked neural firing rates. While we ac- 

knowledge that neural firing rates are not Gaussian distributed, the CC258 estimate, 

being a second-order statistic of the neural firing rates (and their estimates via the 

predictor networks), is sensitive only to the first- and second-order statistics of the 

neural data. A Gaussian distribution captures these first- and second-order statistics 

while making as few assumptions as possible about the higher order statistics in the 

data (i.e., it is a second-order maximum entropy model). As a result, our use of 

Gaussian distributions does not affect the reliability of our estimates of CC258: Using 

more complex, harder-to-estimate probability distributions would yield the same result. 

For this reason, we are confident that our bootstrapping procedure, while different from 

that of Schoppe et al., is comparable to their method. 
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Comparisons with other models 

We compared the results obtained from CNN2 to those of a variety of other 

models. In implementing our comparisons, we used identical cross-validation protocols 

to determine the training and evaluation data that were used to train CNN2. When the 

models contained hyperparameters (including regularization parameters), these 

parameters were optimized on data from the same experimental session used to 

optimize the hyperparameters of CNN2. We also evaluated all models in the same way, 

using the normalized Pearson correlation between predicted and actual neural firing 

rates. 

We organized our models for comparison in two broad groups: models that are 

fully data driven, where all the model parameters were learned from our neural-activity 

data sets, and models where only a linear regression is performed on neural-activity 

data sets using regularization by the least absolute shrink- age and selection operator 

(LASSO). The models using LASSO regression, denoted ‘‘trained with regression,’’ 

often use external information about visual processing. The fully data-driven models are 

denoted ‘‘trained in TensorFlow.’’ Our pixel model could fit into either category but is 

grouped with the LASSO models. The LASSO comparison models are pixels, SAILnet, 

Berkeley Wavelet Transform, and five VGG-16-based models. The fully data-driven 

comparison models are linear–nonlinear (LN), LN-LN, and a one- and a three-

convolutional-layer network. 
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Pixels 

First, we constructed a linear model by performing a weighted sum over all pixel 

values of an image stimulus with a bias to yield a predicted neural activity for each 

neuron. That is, we formed a prediction 

𝑦.,!
9!8:%7 = 𝑏. +	-𝑊.,"𝑥",!

"

 

for the activity An,i of neuron n, where xj,i is the j-th pixel value in image i and the 

constants Wn,j and bn are determined from linear regression using LASSO 

regularization, a type of L1 (sparse) regularized linear regression. The LASSO 

regularization parameter was optimized on data from the same experimental session 

used to optimize the hyperparameters of CNN2. Then, leaving this term fixed, we 

evaluated the model using cross-validation on data from the other nine experimental 

sessions.  

 

SAILnet 

Next we constructed a SAILnet implementation of a sparse-coding model. In the 

SAILnet model the images are first whitened, using the whitening filter defined by 

Olshausen and Field (Olshausen and D. J. Field, 1996). The whitened images are then 

passed into a sparse-coding model, which outputs the activations of 1,089 different 

image features; the number of features is chosen to match the number of pixels. The 

image features, and the activations, are optimized so as to maximize the fidelity of 

image encoding while minimizing the number of active features. As an alternative to the 
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SparseNet implementation(Olshausen and D. J. Field, 1996), we used the SAILnet 

model(Zylberberg et al., 2011). 

After training SAILnet on whitened natural-image patches, we froze the weights 

and passed in whitened versions of the images shown to the monkeys, to obtain the 

activations 𝑧",! of each feature (indexed by j) for each image (indexed by i). We then 

constructed a linear predictor of the neuron firing rate, from the activations of the 

sparse-coding features, with prediction 

𝑦.,!;<=>.:) = 𝑏. +	-𝑊.,"𝑧",!
"

 

Similar to the pixels model, we optimized the biases and weights of this predictor 

using linear regression with LASSO regularization. 

Berkeley Wavelet Transform 

We constructed a Gabor model called the Berkeley Wavelet Transform (BWT) 

model. To construct the BWT model, we trimmed the outer edges of the small images 

by cropping the images down to 243 x 243 pixels, removing part of the gray background 

(the BWT requires square images with edge sizes of a power of 3). We then passed 

each image through the BWT using code shared by the authors(Willmore et al., 2008). 

We did this for all of the small images and then selected those wavelets whose outputs 

had nonzero variance over the set of images (there are 16,478 of those, out of the total 

of 59,049 wavelets); the ones with zero variance occurred because they look at the gray 

parts of the images (see Figure 5.1B). We used the coefficients of these 16,478 

wavelets to predict the neurons’ mean firing rates, using LASSO regression with an 

identical protocol to that of the SAILnet model. The regression was on the weights W 
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and biases b according to the previous equation, where the variables zi,j are BWT 

wavelet activations. 

 

VGG 

To add a comparison to the work(Cadena et al., 2018), we constructed five 

models from a deep CNN called VGG-16 that has been pretrained on an image 

classification task (Simonyan and Zisserman, n.d.). We constructed these models out of 

the activations of VGG at five different depths along the deep network in response to 

our image set. To do this, we trimmed the outer edges of the small images and cropped 

down to 224 x 224 pixels, then copied the grayscale images into each of the R, G, and 

B channels to match the 224 x 224 x 3 input size of VGG. (This duplicates the fact that 

the monkey has the three input channels but saw grayscale images.) We then passed 

these images through the (already trained) VGG-16 model and extracted the activations 

from each layer. Of the layers, we focused on convolutional blocks 2 and 3 because the 

LASSO fitting is much slower on such large inputs (e.g., >590,000 units in convolutional 

3 block 2), and Cadena et al. (2017) show that these blocks provide the best predictions 

of V1 firing rates. For each layer’s activations, we selected those units whose 

activations had nonzero variance over the set of images; the ones with zero variance 

occurred because they look at the gray parts of the images. We used the activations of 

these units to predict the neurons’ mean firing rates, using L1-regularized (sparse) 

LASSO regression. The regression is on the weights W and biases b according to 

Equation 4, where the variables 𝑧!," are VGG activations within the given layer. The five 



 63 

VGG layers we considered are Conv2,1, Conv2,2, Conv3,1, Conv3,2, and Conv3,3 (where 

Conva,b denotes convolutional layer b within block a). 

 

Linear-Nonlinear (LN) 

We constructed an LN model by applying a nonlinearity to a linear model to yield 

a prediction for each neuron. According to the LN model we formed a prediction 

𝑦.,!>4 = 	𝜎 b𝑏. +-𝑊.,"
"

𝑥",!c 

 

for the activity of neuron n, where 𝜎(𝑥) is a nonlinear function. A parametric rectified 

linear was chosen as the nonlinearity because it outperformed a parameterized sigmoid. 

The parameters of the model were trained in TensorFlow using the same learning 

process as for the convolutional models, with early stopping as the primary form of 

regularization. 

 

LN-LN 

We constructed an LN-LN model by cascading two LN models. Thus, 

𝑦.,!>4&>4 =	𝜎$d𝑏. +-𝑊.,?
?

𝜎' b𝑏? +	-𝑊?,"
"

ce 

forms the LN-LN model, where 𝜎(∙)  is the rectified linear function, and the subscripts on 

𝜎'(∙) denote the layer 1. This model was trained in TensorFlow using the same learning 

process as the convolutional models, with early stopping as the primary form of 



 64 

regularization. Its hyperparameters, such as the number of hidden elements, were 

optimized on the same experimental session as CNN2. Our LN-LN model is a non-

convolutional LN-LN. There are more complex versions that use convolutions and 

pooling at the input stage; those are more similar to our CNN1(Vintch et al., 2015). 

CNN1 and CNN3 

In order to show the importance of model depth or lack thereof, we compared our 

chosen best model—the two-convolutional-layer network (CNN2)—to a single- 

convolutional-layer network (CNN1) and a three- convolutional-layer network (CNN3). 

The hyperparameters of CNN1 and CNN3 were optimized on data from the same 

experimental session used to optimize CNN2, and the models were regularized using a 

combination of dropout and early stopping. 

Characterizing the selectivity of cells 

To show that our model describes the activity of a broad class of cell types, we 

grouped the cells into functional classes and looked at how well the firing rates from 

each class could be predicted by our neural- network model. We classified cells by their 

selectivity to specific natural images, their selectivity to specific orientations of grating 

stimuli, their average firing rate over all images A, and their reliability CCmax. 

The selectivity of each neuron to specific natural images is quantified by 

𝑖𝑚𝑎𝑔𝑒	𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦	𝑖𝑛𝑑𝑒𝑥 = 	n𝑁 −
(∑ 𝐴!! )$

∑ (𝐴!$)!
o

1
𝑁 − 1 

where Ai is the cell’s firing rate indexed i over the set of N images(Zylberberg and 

DeWeese, 2013). This index has a value of 0 for neurons that fire equally to all images 

and a value of 1 for cells that spike in response to only one of the images. 
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The neuron’s orientation selectivity is measured by 

𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟	𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 1 −
q∑ 𝐴(𝑒!$(( q
∑ 𝐴((

 

where Ah is the neuron’s firing rate in response to a grating oriented at angle h. The 

circular variance is less sensitive to noise than the more commonly used orientation-

selectivity index (Mazurek et al., 2014). Following the results of Mazurek et al. we used 

thresholds of circular variance < 0.6 to define orientation-selective cells (the simple and 

complex cells according to Hubel & Wiesel, 1959) and circular variance > 0.75 non-

orientation-selective cells. We omitted all other cells from these two groupings. 

Results 

Using our optimal network, we predicted firing rates that were highly correlated 

with the measured firing rates for most neurons (Figure 5.4A) when evaluated on held-

out data. The correlation between the predicted and actual neural firing rates is 

𝐶𝐶ssss.012344$ = 0.556	 ± 0.015 (𝐶𝐶ssss567344$ = 0.493	 ± 0.014) averaged over all 355 neurons in the 

evaluation set without using any selection criteria (Figure 5.4B). To benchmark the 

accuracy of our model, we compared it to a variety of other models (Figure 5.4B). We 

found that CNN2 is, indeed, the best- performing model. In comparison with fully data-

driven models (denoted ‘‘trained in TensorFlow’’), we found that our two-convolutional-

layer CNN2 is more accurate than single- (CNN1) and triple-convolutional-layer (CNN3) 

models, and far more accurate than shallower models such as LN. Compared to 

pretrained models where only LASSO regression was performed on the neural-

activation data, we found that our optimized data-driven CNN outperforms models 

based on VGG, the Berkeley Wavelet Transform, and the SAILnet sparse-coding 
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algorithm (see Methods for details). Because simple and complex cells have been 

extensively studied, we were motivated to compare the predictability of simple and 

complex cells to the predictability of the other neurons in the data set. Grouping the 

cells into orientation-selective (simple and complex like cells) and non-orientation-

selective cells (see Methods), we found that our network predicts non-orientation-

selective cell responses with 𝐶𝐶ssss.012344$ = 0.50	 ± 0.02 and orientation-selective cell 

responses with 𝐶𝐶ssss.012344$ = 0.55	 ± 0.04. Therefore, our model predicts the firing rates of 

both cell types, performing slightly better on the simple- and complexlike cells than the 

non-orientation-selective cells. 

Given that some neurons’ firing rates are well predicted by the network (CNN2) 

while others are not, we were motivated to ask what distinguishes predict- able from 

unpredictable cells. Furthermore, we found that the cells that are well predicted CNN2 

are also well predicted by CNN1 (Figure 5.5D) and CNN3 (Figure 5.5E), indicating 

these differences in predictability are set by the cells themselves rather than the neural-

network architecture. To better understand what is driving these differences among the 

cells, we characterized the cells according to several metrics and then saw how these 

metrics can explain the distribution of predictability over the population of cells. We 

quantified the cells according to their orientation selectivity (see Methods), their image 

selectivity (see Methods), their average firing rate over all images and trials A�, and 

their reliability over repeat image presentations, as quantified by the theoretical upper 

bound on predictability CCmax. Comparing the predictability of each cell’s firing rates 

with its respective image-selectivity index (Figure 5.5A) and circular variance (Figure 
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5.5B), we found that the predictability depends only weakly on these characteristics. 

Thus, orientation selectivity and image selectivity are only minor factors in determining 

how well our model performs. 

We found that a neuron’s activation, or mean firing rate over all images �̅� (Figure 

5.5C), and its limit neural reliability CCmax (Figure 5.5F) are both strongly related to the 

model’s performance. Cells with a low mean firing rate �̅� < 5 Hz are less well described 

by our model, with 𝐶𝐶ssss.012344$ = 0.29	 ± 0.03. Selecting only the norm more active cells (�̅� < 

5 Hz) yields improved predictability, with 𝐶𝐶ssss.012344$ = 0.69	 ± 0.01, increased for neurons 

with greater mean firing rates. Similarly, we found that the model performs much better 

on reliable neurons than on those with low neural reliability. As the limit CCmax on 

predictably set by the neural reliability decreases, the model performance decreases by 

far more, meaning that overall the model does far worse at predicting the activity of 

these neurons. Selecting only the reliable neurons, CCmax > 0.80, yields improved 

predictability, with 𝐶𝐶ssss.012344$ = 0.68	 ± 0.01. Thus, we found that our model describes 

particularly well the neural encoding of both the cells that are more active (�̅� < 5 Hz) 

and the neurons that are more reliable (CCmax > 0.80). 

 

 

Discussion 

We trained a deep convolutional neural network to predict the firing rates of 

neurons in macaque V1 in response to natural image stimuli. In contrast to shallow 

models, such as linear–nonlinear models that can only describe simple cells, we find 



 68 

that our convolutional neural network can describe a broad range of cells. Firing rates of 

both orientation-selective and non-orientation-selective neurons can be predicted with 

high accuracy. Our network describes the more active and more reliable cells 

particularly well. Additionally, we find that the two-convolutional-layer network 

outperforms a variety of other models. 

Our results take a key step toward cracking the neural code for how visual stimuli 

are translated into neural activity in V1. This would be a major step forward in sensory 

neuroscience and would enable new technologies that could restore sight to the blind. 

For example, cameras could continuously feed images into networks that would 

determine the precise V1 activity patterns that correspond to those images: a camera-

to-brain translator. Brain-stimulation methods like optogenetics (Ozbay et al., 2015) 

could then be used to generate those same activity patterns within the brain, thereby 

restoring sight. 

Model comparisons and depth 

Comparing across all of our fully data-driven models (Figure 5.4B, fully trained) of 

visual processing in V1, we find that increasing the complexity or depth of the models 

increases the ability of these models to replicate the visual processes that take place in 

V1, up to a convolutional neural network with two convolutional layers. Increasing the 

depth saturates or modestly decreases this CNN2 network’s performance. We also find 

some difference between networks of comparable depths. For instance, the CNN1 and 

LN-LN networks are both the same depth, with two hidden layers. However, CNN1 does 

far better at predicting the firing rates in V1. The increased performance of CNN1 is 
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perhaps due to the constraints of the convolutional filters. We want to emphasize that 

our LN-LN model represents only a small subset of all the possible LN-LN models, and 

our CNN1 model could be classified as an LN-LN model. Overall, our results support 

the hypothesis that a model architecture with two convolutional layers and an all-to-all 

layer well represents the visual processing that takes place in V1. 

Comparisons to other work 

Although it is difficult for a variety of reasons to fairly compare the performances 

of published results, we predict neural activity with performance that is comparable to 

the state of the art. Over all neurons, the correlation between our network predictions 

and the actual neural firing rates is 𝐶𝐶ssss567344$ = 0.493	 ± 0.014. For comparison, Lau, 

Stanley, and Dan (2002) achieved predictability of 𝐶𝐶ssss567 = 0.45 for simple cells and 

𝐶𝐶ssss567 = 0.31 for complex cells; Vintch et al. (2015) achieved predictability of 𝐶𝐶ssss567 =

0.55 for simple cells and 𝐶𝐶ssss567 = 0.42 for complex cells; and Prenger, Wu, David, and 

Gallant (2004) achieved 𝐶𝐶ssss567 = 0.24 averaged over all cells. Lehky et al. (1992) 

achieved𝐶𝐶ssss567 = 0.78, and Willmore, Prenger, and Gallant (2010) achieved a 

predictability (quantified as fraction of variance explained) of 0.4. However, some 

contextual factors confound direct comparison to these results. Specifically, Lehky et al. 

selected neurons that are easier to predict by specifically choosing neurons that 

responded strongly to the presentation of bars of light; Vintch et al. analyzed direction-

selective neurons; and Willmore et al. adjusted their image to match the receptive field 

of each neuron they predicted. We, by contrast, neither tailored our stimulation to our 
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neurons nor selected well-behaved neurons. By selecting on either reliability or 

activation, we could easily achieve 𝐶𝐶ssss567344$ > 0.6. 

Consistent with Cadena et al. (2017), we find that the VGG layer most predictive 

of V1 neural firing rates is Conv3,1. However, in contrast with Cadena et al., we find that 

our data-driven CNN outperforms even this best VGG layer. In this comparison, 

confounds include having different images sets, using different methods for optimizing 

hyperparameters of CNNs, and using anesthetized monkeys rather than awake 

monkeys. 

Identifying visual features that elicit high activity 

In addition to making predictions of neural activity, the CNN represents the 

underlying visual processing that drives the population of neurons to spike. As an 

example of how to use the model as a tool to investigate the functions of individual 

neurons, we used Deep-Dream-like techniques (Mahendran and Vedaldi, 2015) to 

identify the visual features that cause each cell to spike. We inverted our network by 

finding input images that cause a given cell to spike at a prespecified level. To do this, 

we first took the fully trained network and set Gaussian-white-noise images as the input. 

We then used back-propagation to modify the pixel values of the input image to push 

the chosen neuron’s predicted firing rate toward the prespecified level. Thus, we found 

an input image that induced the prespecified response. We applied this procedure to 

several different neurons that are well described by the model, and at several different 

target firing rates (Figure 5.6). Cells A (𝐶𝐶ssss567344$ = 0.88) and B (𝐶𝐶ssss567344$ = 0.89) appear to 

function like previously characterized cells. Cell A responds to a center–surround image 
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feature, and cell B’s receptive field is a Gabor wavelet. In contrast, cells C (𝐶𝐶ssss567344$ =

0.91) and D (𝐶𝐶ssss567344$ = 0.90) appear to respond to more abstract image features that are 

not well represented by simple localized image masks. For comparison, we plot the 

receptive fields according to the LN model (Figure 5.6, left). 

By inverting our network, we showed that we can use it as a tool to investigate 

neurons’ response properties that cannot be found with shallower models. Going 

forward, this method shows potential for characterizing the response properties of more 

cells in V1 and precisely defining functional cell types that have been previously 

overlooked. Looking beyond V1, these methods could be applied to understanding 

higher level cortical processing, such as visual encoding in V2. By finding the features 

that elicit a response in V2 neurons, this tool could help fill the visual-encoding 

knowledge gap (Ziemba et al., 2016) that exists between the abstract encoding of 

inferior temporal cortex and V4 and the low-level encoding of the retina and V1. 

Window length and well-isolated neurons 

In our main analysis, we focused on predicting the initial neural response to 

exclude influence of top-down feedback from higher cortical areas. That is, we focused 

on the timescale when biological neural processing is most analogous to the feed-

forward architecture of the artificial neural networks in our study. Because we 

considered only the initial response of the neurons to the stimulus, we were motivated 

to ask how well our network architecture can predict the neurons’ firing rates, estimated 

by counting spikes over the full 100-ms window in the data of Coen-Cagli et al. (2015). 

Repeating our analysis with 100-ms windowed data, we found that our predictions have 
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correlation 𝐶𝐶ssss.012344$ = 0.506 ± 0.006	to the measured firing rate over all neurons. This is 

slightly worse than our main analysis, where we used a 50-ms window. This result is not 

surprising, because we optimized the hyperparameters of our model using a 50-ms 

window. 

Because the dataset we use groups both well-isolated neurons and small 

multiunit clusters, we were motivated to see how our best CNN2 model performs at 

predicting firing rates of each of these unit types. Following Coen Cagli et al. (2015), we 

identified the most well-isolated neurons by choosing only those whose signal-to-noise 

ratio in the spike sorting is greater than 2.75, and the remaining neurons (spike-sorting 

signal-to-noise ratio < 2.75) are an indistinguishable mixture of small multiunit clusters 

and single neurons. We found that the most well-isolated neurons have a predictor 

performance of 𝐶𝐶ssss.012344$ = 0.414 ± 0.016, whereas the mixture of clusters and single 

neurons has 𝐶𝐶ssss.012344$ = 0.635 ± 0.012. We were initially surprised by this finding, as we 

expected the well-isolated single units to be the most predictable. However, the 

multiunit clusters, being aggregates of several neurons, have higher average firing 

rates: 12.6 ± 0.6 spikes/s on average (𝑀 ± 𝑆𝐸𝑀), compared with 8.4 ± 0.8 spikes/s for 

the well-isolated single units (estimated during the 50-ms spike-counting window). 

Recall that neurons with higher firing rates were generally more predictable (Figure 

5.5C). We thus attribute the higher predictability of the multiunit clusters to their higher 

mean firing rates. 
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Figure 5.1 Experimental data collection and processing. (A) Neural activity was recorded in monkeys’ V1 as they 
were shown a series of images. (B) The image set contains 270 circularly cropped natural images. (C) The response 
of a single neuron over repeated presentations of an image. Ticks indicate the neuron’s spiking; each row 
corresponds to a different image-presentation trial. During the response window, the firing rate is computed and then 
averaged over trials to yield the average response An,i used in our analysis. (D) The neuron responds to image 
stimuli with a latency of ;50 ms from the image onset at t 1⁄4 0, as seen in the peristimulus time histogram (firing rate 
plotted against time, averaged over all 270 images). 
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Figure 5.2 The optimized architecture of the deep convolutional-neural-network model. The network’s inputs are the 
pixel values of an image, and each output unit gives the predicted firing rate of a single neuron in monkey V1. 
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Figure 5.3 The hyperparameter optimization of the deep convolutional-neural-network model. (A) Adjusting the 
number of convolutional layers, loss function, convolutional kernel size (size of filters), and maxpool strides (scale of 
down-sampling) for just Layer 1 and both Layers 2 and 3. Each point is computed from the average Pearson 
correlation coefficient between the model’s predictions and measured firing rates on one of the 10 experimental 
sessions with the standard error computed from five distinct partitions of training and evaluation data. (B) Adjusting 
the dropout keep rate for the best-performing networks with one, two, and three convolutional layers. 

 

  



 76 

 

Figure 5.4 The performance of the best convolutional network model, CNN2. (A) A histogram of the normalized 
Pearson correlation coefficients between the network predictions and the actual firing rates CCCNN2 of all 355 
neurons. (B) The average performance of norm the convolution-neural-network predictor (CNN2) compared to a 
variety of other models. The models are grouped as models that are trained only with regularized linear regression by 
least absolute shrinkage and selection operator on the neural-activity data (pixels, Berkeley Wavelet Transform 
[BWT], SAILnet, and our VGG models) and models where all the parameters are fully trained on the neural activity 
using TensorFlow (linear–nonlinear [LN], LN-LN, CNN1, and CNN2). The five VGG models in green are denoted 
Conva,b for convolutional layer b within block a. 
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Figure 5.5 Characterizing the predictability of CNN2 (CCCNN2) over the population of neurons; each data point 
corresponds to a single norm neuron. (A) Scatterplot of how well the predictor can predict each neuron’s firing rate 
CCCNN2 (vertical axis) against the neuron’s image selectivity (horizontal axis). (B) Scatterplot against the neuron’s 
circular variance (horizontal axis). (C) Scatterplot against the neuron’s average firing rate A� (horizontal axis). (D) 
Scatterplot against the predictability CCCNN1 of CNN1 (horizontal axis). (E) Scatterplot against the predictability 
CCCNN3 of CNN3 (horizontal axis). (F) Scatterplot against the neural reliability CCmax (horizontal axis) 
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Figure 5.6 Using the network model to reveal the visual features that drive individual neurons. (Left) Receptive-field 
filters from the LN model for four neurons. (Right) For each neuron, we synthesized images that drove the predicted 
firing rates to the specified target values using the convolutional-neural-network model. These target firing rates were 
chosen to be different percentiles of the neuron’s firing-rate distribution. Cells A and B appear to respond to localized 
image features, whereas cells C and D respond to more abstract image features. 
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CHAPTER VI 

SINGLE NEURONS TO BRAIN-WIDE STATES 

A persistent challenge in neuroscience is to bridge the gap between the complex 

tasks we know brains can perform and the physical components (neurons) that enable 

them. In vision, this divide is particularly wide, and much effort has been devoted to 

understanding how our brain processes visual information. For instance, we know the 

visual cortex receives complex spatiotemporal patterns of light relayed by the retina and 

reformats these patterns to infer what caused them (i.e. the identity of the object 

present) (DiCarlo et al., 2012). Answering this question requires first understanding how 

visual information is encoded at each sequential stage of processing along brain areas 

in visual cortex. Computational modeling has much to offer neuroscience in addressing 

this knowledge gap. One approach is to build computational models to replicate the 

neural encoding which takes place when the brain receives sensory stimuli.  

Modeling Neural Encoding with ANNs 

Predicting Single Units 

At the most granular level, information is encoded in the spiking activities of 

individual neurons. Traditional systems neuroscience approaches have advanced our 

understanding of neural encoding by providing explanations for what individual neurons 

compute. In visual systems neuroscience, Hubel and Wiesel performed the seminal 

work in the field showing that individual simple and complex cells in primary visual 

cortex (V1) “tuned” to respond to oriented edges. This approach has worked well for 
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cells that respond well to simple stimuli, but the encoding properties of many other cells 

in V1 are still unexplained (Olshausen et al., 2001). 

We demonstrate ANNs trained with machine learning techniques are a robust 

model of neural encoding in V1 capable of accurately predicting single neuron 

responses to natural stimuli. Importantly, this model achieves equally good predictability 

for both orientation selective and non-orientation selective cells for natural image 

stimuli. We show this approach is a useful tool for studying responses properties of 

previously difficult to study cells in V1. 

Objectively Useful 

David Marr proposed the idea that understanding the computational goals of 

visual processing is equally important and complementary to an understanding of the 

parts (e.g. individual neurons) that physically implement it (Marr et al., 1976). For early 

visual areas, efficient coding as a computational goal has been successful at explaining 

response properties of cells in primary visual cortex (V1) but has not worked as well at 

explaining responses in higher visual areas. The prevailing view for higher visual areas 

like inferior temporal cortex (IT) is that object recognition best describes its objective but 

directly testing this hypothesis is difficult.  

Questions of this nature are fundamentally challenging to test, especially when 

limited to only analyzing responses for a handful of neurons. Recent results have 

demonstrated ANN’s may be better suited for evaluating higher visual area objectives. 

Deep convolutional neural networks (DCNN’s) trained to categorize objects in images 

also develop internal representations which also match IT responses to natural images. 
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It has been posited that matching representations could only arise if both the model and 

ventral stream are optimized for the same objective.  We tested this explanation by 

optimizing models for both image categorization and a composite categorize and 

reconstruct objective. We find models which optimize the composite objective have 

representations which match IT better than representations formed from categorize 

alone. This is surprising, if strictly object recognition best describes the objective of 

visual processing in the ventral stream, optimizing an alternate objective should develop 

more poorly matching representations. However, this finding may help reconcile two 

observations at odds with the strictly object recognition hypothesis. First, it’s been 

shown that visual processing areas show matching activation patterns in response to 

both viewing a scene and mentally visualizing the same scene (Freud et al., 2016; 

O'Craven and Kanwisher, 2000; Sereno and Lehky, 2011; Stokes et al., 2009). Second, 

ventral stream areas explicitly retain information not useful for object recognition (Hong 

et al., 2016). 

Half of nonhuman primate neocortex is devoted to visual processing (Felleman 

and Van Essen, 1991), underscoring both its complexity and evolutionary importance. 

Furthermore, the ‘No free lunch theorems’ demonstrate objective function choice is not 

arbitrary; no learning algorithm performs well on all tasks. These pressures dictate an 

alternate objective choice, should have a compelling advantage. Our work suggests that 

an advantage such as noise robustness might explain why the alternate categorize and 

reconstruct objective provides a better match to IT representations. 
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Deep Brain Stimulation 

Current neurostimulators are non-adaptive, limited by lack of robust methods for 

reading out a patient’s brain state necessary for adaptive neurostimulation. This work 

has also shown the promise of ANN’s as useful tool decoding information from neural 

activity.  In chapter 3 we described our efforts to build such a model capable of 

detecting sleep stage from local field potential (LFP) recordings taken from DBS 

electrodes implanted in the subthalamic nucleus (STN).  In this work we trained an ANN 

classifier model to predict the sleep state of PD patients from spectral decomposition 

features in their local field potentials. 

Looking forward 

In this work we leverage ANN models as a powerful tool to improve our 

understanding of neural encoding, predict brain-wide states, replicate population 

response properties in IT, and predict individual neuron responses to stimuli. We 

demonstrate that the objective best describing higher visual areas may be more 

complex than solely object recognition and show why this may be important for practical 

reasons. While these advances take important steps forward in modeling neural 

encoding, our model performance is likely limited by several factors. 

Current shortcomings 

Model input medium 

More accurate models of cortical visual processing can likely be achieved by 

training models using media more aligned with natural vision. For instance, the brain’s 
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visual processing system has been evolutionarily optimized to operate on sequences of 

images (e.g. video) and not just a single snapshot. Motion signals, which are present 

changes in object location frame by frame, convey important information used by the 

visual system. The models described in this work do not take advantage of extra 

information present in the time domain of video. Future models will likely take 

advantage of this kind of information. 

Attention 

 One of the important uses of motion signals is to help direct our attention to 

focus on parts of visual field that is more important than others. Attention mechanisms 

allow our visual system to use its visual processing resources more efficiently. Attention 

layers have been used successfully in both machine translation and some classification 

networks, yet our current models do not have an attention component. Future 

regression and classification models which attempt to predict neural encoding will likely 

benefit from the addition of attention as a component of the model. 

Interaction 

Another key aspect of the development of visual representations is interaction. 

While little definitive evidence in human brains exists, it is highly likely that our visual 

representations are influenced by our ability to interact with our environment as agents. 

Developing training environments in which models can move and interact in 3D 

rendered environments as agents when learning object recognition tasks will likely 

improve model accuracy and training efficiency. Models which incorporate agency 

typically also intersect reinforcement learning, another important field of machine 

learning, which we did not cover in our work. 
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Future Challenges 

Stimulation resolution 

Beyond the models themselves, ideal implantable neurostimulators still have 

several challenges which need to be addressed for widespread use in human patients. 

One of these challenges is the current resolution limits of implantable neurostimulators. 

Even with a perfect model for predicting individual neuronal responses to visual stimuli, 

large-scale devices with stimulation resolutions down to single neurons are still not 

widely available. Optogenetic methods have shown promise for devices with single 

neuron resolution (Ozbay et al., 2015). However, optogenetic devices face even more 

regulatory hurdles than traditional implantable devices due to the gene therapy 

components necessary to deliver the photosensitive ion channels to neurons. In 

addition to challenges intrinsic to the interface hardware, another issue facing practical 

cortical prosthetics is the variability in neural encoding across individuals.  

Individual variability 

Clinical use in human patients will require ways to tune models to an individual’s 

specific encoding, which is currently missing when we train models on a dataset 

containing recordings from 1-2 subjects. We are optimistic that overcoming issues of 

individual variability is achievable. Our work on predicting individual brain states in 

human LFP patterns shows that for some domains of neuronal encoding, model 

generalization across individual patients is possible. These results still require clinical 

validation on a novel cohort of patients. This validation study could also include a 

component to determine optimal stimulation settings for each state. For instance, the 
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stimulation parameter space could be sampled during a sleep study to identify 

parameters that might influence sleep state transitions. This could have important 

implications due to the fact that PD patients often transition into REM sleep states less 

often than healthy patients. 

Conclusion 

ANN’s trained with supervised learning represent a promising tool for implantable 

stimulators such DBS and may enable algorithms for closed-loop control systems. 

Furthermore, we’ve shown the potential of ANNs as a tool for studying neural encoding. 

ANNs show equivalent and in some cases better prediction accuracy of neuronal 

responses in V1, V4, and IT to visual stimuli. In light of these findings, we are optimistic 

that ANNs will enable the next generation of implantable stimulators. 
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