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Abstract 7 

A widely held view in visual systems neuroscience is that the ventral stream (VS) of mammalian 8 
visual cortex maps visual inputs onto firing patterns that specify object identities. Recent 9 
experiments, however, showed that information about object positions, sizes, etc. is encoded with 10 
increasing explicitness along this pathway. Here, we show that computational models that identify 11 
objects while also retaining enough information about the input image to allow its reconstruction, 12 
can provide a better description of how primate VS represents this category-orthogonal 13 
information, than do models that “just” identify objects. A thorough understanding of VS 14 
computations might thus require considerations beyond object recognition. 15 

Significance Statement 16 

Our key finding is that ventral stream physiology is better described by a composite computational 17 
objective of object recognition and reconstruction, rather than object recognition alone. Because this 18 
finding potentially overturns the longstanding object recognition hypothesis of ventral stream function, 19 
we expect it to have substantial impacts on visual systems neuroscience. 20 

Introduction 21 

The ventral stream (VS) of visual cortex begins in primary visual cortex (V1), ends in inferior temporal 22 
cortex (IT), and is essential for object recognition. Accordingly, the long-standing belief in the field is 23 
that the ventral stream could be understood as mapping visual scenes onto neuronal firing patterns that 24 
represent object identity1. Supporting that assertion, deep convolutional neural networks (DCNN’s) 25 
trained to categorize objects in natural images develop intermediate representations that resemble those 26 
in primate VS2-5. However, several experimental findings appear at odds with the object recognition 27 
hypothesis. VS and other visual areas are also engaged during visualization of both previously 28 
encountered and novel scenes6,7, suggesting that the VS can generate visual scenes in addition to 29 
processing them as inputs. Furthermore, non-categorical information, about object positions8, sizes, etc. 30 
is also represented with increasing explicitness in late VS areas V4 and IT9. This is not necessarily 31 
expected in a “pure” object recognition system as the non-categorical information is not necessary for 32 
the categorization task. Thus these recent findings challenge notion that ventral stream is purely an 33 
object recognition system, and raise the question: What computational objective best explains VS 34 
physiology10?  35 

To address this question, we pursued a recently-popularized approach and trained deep neural networks 36 
to perform different tasks: we then compared the trained neural networks’ responses to image stimuli to 37 
responses observed in neurophysiology experiments,3-5,9 to see which tasks yielded models that best 38 
matched the neural data. We trained our networks to perform one of two visual tasks: a) recognize 39 
objects; or b) recognize objects while also retaining enough information about the input image to allow 40 
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its reconstruction. We studied the evolution of categorical and non-categorical information 41 
representations along the visual pathway within these models and compared that evolution with data 42 
from monkey VS. Our main finding is that neural networks optimized for task (b) provide a better match 43 
to the representation of non-categorical information in the monkey physiology data do those optimized 44 
for task (a). This suggests that a full understanding of visual ventral stream computations might require 45 
considerations other than object recognition.  46 

Materials and Methods 47 

Dataset and Augmentation 48 

We constructed images of clothing items superimposed at random locations over natural image 49 
backgrounds. To achieve this goal, we used all 70,000 images from the Fashion MNIST dataset, a 50 
computer vision object recognition dataset comprised of images of clothing articles from 10 different 51 
categories. We augmented this dataset by expanding the background of the image two-fold (from 28x28 52 
pixels to 56x56 pixels) and drawing dx and dy linear pixel displacements from a uniform distribution 53 
spanning 75% of the image field {-11,11}. Images were then shifted according the randomly drawn dx 54 
and dy values. After applying positional shifts, the objects were superimposed over random patches 55 
extracted from natural images from the BSDS500 natural image dataset to produce simplified natural 56 
scenes which contain categorical (1 of 10 clothing categories) and non-categorical (position shifts) 57 
variation. Random 56x56 pixel patches from the BSDS500 dataset were gray scaled before the shifted 58 
object images were added to the background patch (Fig 1A). All augmentation was performed on-line 59 
during training. That is, every position shift and natural image patch was drawn randomly every training 60 
batch instead of pre-computing shifts and backgrounds. This allows every training batch to be composed 61 
of unique examples from the dataset and prevents overfitting. 62 

Primate Electrophysiology 63 

Neural recordings were originally collected by the DiCarlo lab (Hong et al 2016) and shared with us for 64 
this analysis. In brief, neural recordings were collected from the visual cortex of two awake and 65 
behaving rhesus macaques using multi-electrode array electrophysiology recording systems (BlackRock 66 
Microsystems). Animals were presented with a series of images showing 64 distinct objects from 8 67 
classes rendered at varying eccentricity in the animal’s visual field. After spike-sorting and quality 68 
control this resulted in well-isolated single units from both IT (n=168) and V4 (n=128); higher-order 69 
areas in primate visual cortex. A full description of the data and experimental methods is given by Hong 70 
et al. (2016). 71 

Computational models 72 

Non-convolutional models were constructed by sequentially combining all-to-all (aka densely 73 
connected) layers. Any given layer uses the previous layers’ output as input, multiplying the inputs (x) 74 
from by a weight matrix (w) and adds a bias to each unit in the output. Finally, this value is passed 75 
through a nonlinear activation function. Each layer outputs an activation vector of its units (y) which is 76 
function of its inputs (x).  77 

𝑦 = 𝜎$(𝑥 ∙ 𝑤) + 𝑏, 78 
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The size of each layer in the models used in our experiments were chosen to have layer sizes with 79 
roughly similar proportions to the number of output neurons in corresponding brain areas of ventral 80 
stream (Felleman and Van Essen 1991).  81 

Area # output neurons 
(106) 

# layer outputs Computational 
model 

  3136 (56 x 56) Layer 0 (input image) 
V1 37 3000 Layer 1 
V2 29 2000 Layer 2 
V4 15 2000 Layer 3 
IT 10 70 (35+35) Layer 4 

Similar to the non-convolutional models, the convolutional models were constructed by sequentially 82 
combining convolutional layers. Each convolutional layer receives as input a spatially arranged map 83 
from the prior layer. A filter kernel is multiplied against the input at each spatial location in the input, 84 
and the resultant value is added to the bias and passed through the nonlinear activation function.  85 

The convolutional models described in our paper were constructed according to the table below: 86 

 Output Size Kernel 
Size 

Activation 
Function 

Dropout 
rate 

Batch Normalization 
Momentum 

Input 56 x 56 N/A N/A N/A N/A 

Layer 1 28x28x16 3x3 LeakyReLU 25% 0.8 
Layer 2 14x14x32 3x3 LeakyReLU 25% 0.8 
Layer 3 7x7x64 3x3 LeakyReLU 25% 0.8 
Layer 4 70(35+35)  Linear 0% 0.8 

Models using the composite classify-reconstruct objective (see below) need an additional 87 
generator network to reconstruct the original stimulus input from the latent representation. The generator 88 
network (G) uses a residual convolutional neural network (ResNet) which has achieved state of the art 89 
performance in natural image generation. 90 
The generator network uses is comprised of Deconvolutional layers and its architectural 91 
hyperparameters directly mirror those in the convolutional encoder. 92 

Objective functions and training parameters 93 

Models optimized for classification use categorical cross-entropy for the objective function. Categorical 94 
cross-entropy (XENT) is a commonly used objective function in machine learning to train neural 95 
network classifiers. Multilabel cross-entropy is calculated according to the equation below where M is 96 
the total number of classes  97 

𝑿𝑬𝑵𝑻 =	−3𝒚𝒄 ∙ 𝒍𝒏(𝒚7𝒄)
𝑴

𝒄#𝟏

 98 
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Here, 𝒚𝒄	is the true category label, represented as a one-hot vector, and 𝒚7𝒄 is the network output 99 
obtained from the linear readout of population V (see Fig. 1).  100 

Models with an objective function term for reconstructing the original input scene use pixel-wise sum of 101 
squared error (SSE) between the input and the generator’s output (𝒙7).  102 

𝑺𝑺𝑬 = 	3(𝒙 − 𝒙7)𝟐 103 

 104 

We trained each model in our experiment until classification accuracy plateaued on a validation dataset 105 
of 512 objects from the 10,000 test images in the fashion MNIST dataset.  106 

Model Evaluation 107 

After training performance plateaus, 192 randomly chosen unit activations from Layers 1-3 in the 108 
encoder model (Fig 1B) were used in comparisons with primate ventral stream electrophysiology. Unit 109 
activations were generated using a random sample from held out test images (not used during training). 110 
As in a (simulated) electrophysiology experiment, each image was input to the network, and the 111 
corresponding unit activations were recorded. We then analyzed these unit activations in the same way 112 
as we did the firing rates recorded in monkey visual cortex. 113 

We measured selectivity of our artificial neurons in the same way as Hong et al 2016 (they call these 114 
measures “performance” instead of selectivity). For continuous-valued scene attributes (e.g. horizontal 115 
position) we measured selectivity as the absolute value of the Pearson correlation between the neuron’s 116 
response and that attribute in the stimulus image. For categorical properties (e.g. object class) we 117 
measure selectivity as the one-vs-all discriminability (d’). 118 

We quantified the similarity of each models’ layer-wise selectivity to corresponding layers in primate 119 
ventral stream using Fisher’s Combined Probability Test (FCT). As discussed in the main paper, we first 120 
used the Welch’s unpaired t-test to calculate p-values model-VS pairs for all selectivity metrics in the 121 
corresponding layers, then used the FCT to combine those p-values into a single likelihood measure that 122 
reflects the likelihood of observing the monkey physiology data, under the hypothesis that those data are 123 
drawn from the same distribution as the units computational model: a larger p-value corresponds to a 124 
model that more closely matches the monkey data. 125 

Results 126 

Computational Models 127 

To identify the degree to which different computational objectives describe ventral stream physiology, 128 
we optimized computational neural network models for different objectives, and compared them to 129 
neural recordings from the primate ventral stream. Each computational model was constructed out of a 130 
series of layers of artificial neurons, connected sequentially. The first layer takes as input an image 𝒙 131 
and at the final layer outputs a set of neuronal activities that represent the visual scene input (Fig 1B), 132 
including object identity. We refer to this output as the latent representation. The input images, 𝒙, 133 
consisted of images of clothing articles superimposed over natural image backgrounds (see Methods). 134 
Each image used a single clothing article rendered in a randomly chosen position and placed over a 135 
natural image background (Fig. 1A).  136 
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The models each had a total of three layers of processing (corresponding to cortical areas V1, V2, and 137 
V4) between their inputs and these latent representations; the latent representations correspond to area 138 
IT, for reasons we discuss below. The visual inputs to the model had normalized luminance values, 139 
mimicking the normalization observed in thalamic inputs to V111. The connectivity between neurons in 140 
each layer (and the artificial neurons’ biases) were optimized within each model, to achieve the specified 141 
objective (see Methods). We repeated this process for two different objectives, yielding two different 142 
types of models.  143 

The first type of model was optimized strictly for object recognition: the optimization maximized the 144 
ability of a linear decoder to determine the identity of the clothing object in the visual scene from the 145 
latent representation. (This mirrors the observation that neural activities in area IT can be linearly 146 
decoded to recover object identity12). The second type of model was optimized for two tasks in parallel: 147 
the ability of a linear decoder to determine object identify from latent representation, and the ability of a 148 
decoder to reconstruct the object from the latent representation. (See Methods for details about the 149 
optimization procedure). We repeated this procedure with both convolutional, and non-convolutional 150 
neural network architectures, yielding a total of four models (Fig 1C). 151 

In all cases, the models were optimized using sets of images containing randomly sampled objects, until 152 
their object classification performance saturated on a set of held-out validation images. Good 153 
performance on the categorization task was obtained in all models (Fig 1D). Having developed models 154 
optimized for these different objectives, we could evaluate how well each model matched observations 155 
from primate VS, and use that comparison to determine which computational objective provides the best 156 
description of primate VS. 157 

Electrophysiology Comparisons 158 

To compare our neural network models to ventral stream physiology, we used the experimental data 159 
from a previously-published study9,12 (see methods and ref9,12 for details). These data consisted of 160 
electrode array recordings from areas V4 and IT of monkeys that were viewing images; many neurons in 161 
each area were simultaneously observed. Within these data, we assessed each neuron’s selectivity for 162 
object identify, and for category-orthogonal image properties (e.g. horizontal object position), as in 163 
Hong et al9 (see methods). We performed this analysis for the monkey data, and for the artificial neurons 164 
in each layer of each of our computational models. We then compared the trends in image property 165 
selectivity displayed by non-human primate VS neurons and units from each of our models along the 166 
visual processing pathway. 167 

In the primate VS, selectivity for both categorical and category-orthogonal scene attributes increased 168 
along the ventral stream (Fig 2A), as reported by Hong et al9. This indicates that both types of attributes 169 
are more explicitly represented in progressively deeper ventral stream areas. 170 

Within our computational models, those models optimizing the composite objective showed the same 171 
trends observed in primate ventral stream neurons (Fig 2C, 2E): both category and category-orthogonal 172 
properties of the visual scene are represented more explicitly with each subsequent layers of the model. 173 
This observation persisted for both the convolutional and the non-convolutional architectures. For 174 
contrast, models optimized solely for object recognition (without the image reconstruction component of 175 
the objective function) did not show consistent increases in position selectivity along the visual pathway 176 
(Fig 2B, 2D). Again, this observation held for both convolutional and non-convolutional model 177 
architectures.  178 
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Thus, models optimizing the composite objective function qualitatively recapitulate the trends in 179 
neuronal selectivity along the visual pathways better than do models optimized strictly for object 180 
recognition. This observation motivated us to quantify how well each model matched the primate VS 181 
data. To achieve this goal, we performed the following analysis on each computational model. First, we 182 
used unpaired t-tests to estimate the probability that there is no difference in object category selectivity 183 
between the primate IT data and the model’s latent representation. We then performed a t-test comparing 184 
the primate V4 category selectivity to the corresponding layer of the computational model. Next, we 185 
performed t-tests comparing the horizontal, and vertical, position selectivities in primate V4 and IT to 186 
the corresponding layers of the computational model. This procedure yielded 6 p-values, describing the 187 
probability that the model matched each of these attributes observed in the primate VS. Finally, we used 188 
Fisher’s method13 to combine those 6 p-values into a single number, that quantified the likelihood of 189 
there being no difference between the computational model and the primate VS. 190 

Comparing these likelihood values, we found that the convolutional models overall provided better 191 
descriptions of the primate VS than did the non-convolutional ones (i.e., they had higher likelihood 192 
values), and that the best model overall was the convolutional neural network optimized for the 193 
composite classify-and-reconstruct objective (See Supplemental Fig. 1).  194 

Noise Robustness 195 

We found that the convolutional model, optimizing the composite objective (classify-and-reconstruct) 196 
best matched the depth-dependent increase in position selectivity seen in single unit activities recorded 197 
from primate ventral stream. This led us to ask whether there might be functional benefits for networks 198 
optimizing this composite objective function, as compared with ones that are just trained to classify their 199 
inputs.  200 

Further motivating this question, we note that previous work has shown that convolutional neural 201 
networks optimized for object recognition tend to perform poorly on object recognition tasks when the 202 
images are corrupted by noise. Specifically, classification performance has been seen to decrease 203 
significantly when networks are evaluated under noise conditions even marginally different from the 204 
conditions under which it was trained14. This is different from the primate visual system, where object 205 
recognition performance is more robust to image noise, leading us to speculate that the convolutional 206 
networks trained for the composite classify-and-reconstruct task – which provide the best match to 207 
primate VS data – might have classification performance that is more robust to image corruption than do 208 
the networks trained purely for object recognition. 209 

To test that hypothesis, we took each of our previously trained models, and measured their accuracy at 210 
categorizing the clothing objects in test images corrupted by increasing levels of additive pixel noise 211 
(see methods). Similar to previous work, the convolutional model trained purely for object recognition 212 
showed a decrease in performance as the noise level increased. For the convolutional model trained on 213 
the composite task, the decrease in performance with increasing noise level was less severe. This 214 
suggests that, consistent with our hypothesis, there is a functional benefit to systems optimizing the 215 
composite objective over “pure” object recognition systems: their object recognition performance is 216 
more robust to noise. 217 

The same finding also holds for the non-convolutional model architectures, and they are overall more 218 
robust to image noise than are the convolutional ones. We repeated this analysis with multiplicative 219 
(instead of additive) pixel noise (see Supplemental Fig. 2) and demonstrate that our findings can be 220 
generalized across multiple noise types. 221 
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Discussion 222 

Here we report evidence that convolutional neural networks (DCNNs) optimizing a two-part composite 223 
objective (recognize and visualize) describe the depth-dependent evolution of categorical and non-224 
categorical information in primate VS better than do networks optimized for object recognition alone. 225 
This is unexpected, as prior work posits that networks optimized strictly for object recognition should 226 
form the best models of primate VS.2,4,9,10 Our results suggest that the evolution of category-orthogonal 227 
information along the visual pathway could require a different functional explanation. Moreover, 228 
consistent with previous work,2,4,9,10 our CNNs optimized for image classification resemble primate VS 229 
more closely than do non-convolutional models optimizing the same objective.  230 

Our findings may help reconcile discrepancies between the object recognition hypothesis of VS and 231 
results which appear at odds with this interpretation,6,7,15,16 for example the finding that primate VS 232 
explicitly retains information not useful for object recognition experiments tested previously.9 The 233 
composite objective promotes retention of both category and category-orthogonal information because 234 
both are necessary to reconstruct the stimulus.  235 

Importantly, we used a different method to compare our neural networks to the primate VS than have 236 
previous studies that compared the representational dissimilarity matrices (RDMs) for their models, with 237 
those of the primate VS.2,4,9,10 While RDMs assay the (dis)similarity in how different images are 238 
represented by the models, or primate VS, recent work suggests RDM analysis may be insufficient as a 239 
universal metric of model similarity17; especially when the model cannot be trained using identical 240 
image datasets (as in our case). Instead, our approach was to focus on the depth-dependent evolution of 241 
neuronal selectivity to categorical and non-categorial variations in the input images. Our conclusion -- 242 
that an objective other than pure object categorization could best describe the computations in primate 243 
VS – differ from prior studies and further suggest that aspects of visual computation are not fully 244 
captured by RDM analysis. 245 

Furthermore, our findings suggest noise tolerance as another independent explanation for why the VS 246 
might use a composite computational objective. VS classification accuracy measured in humans 247 
tolerates noise corrupted images much better than DCNNs optimized for image classification alone14. In 248 
contrast, convolutional models optimizing the composite objective demonstrate better noise tolerance 249 
compared to identical models trained solely for classification (Fig 3). Importantly, improved noise 250 
tolerance occurs without having to augment training images with noise. These findings complement the 251 
expanding body of work to explain the neuronal computations in visual processing and have applications 252 
in the computer vision models that emulate them. 253 
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Fig. 1: Overview 283 

 284 

A) We constructed images of clothing items superimposed over natural image backgrounds at random 285 
eccentricities. B) We model the ventral stream as an encoder whose objective is to map input image (x) 286 
onto more abstract “latent” representations (D and V). In our models this entire latent space is 287 
represented by 70 artificial neurons (35 units in each of D and V) The generator network uses these 288 
latent representations (D and V) as input to reconstruct the object and its location within the scene. A 289 
separate linear decoder attempts to determine the object identity from the activities of the units in V. C) 290 
We trained both convolutional, and non-convolutional neural network architectures, on one of two tasks: 291 
object categorization (“classify”), or object categorization with concurrent image reconstruction. We 292 
note that, for the “pure” object recognition task, the generator network is superfluous. D) Neural 293 
networks with both architectures achieve comparable object recognition performance (accuracy) when 294 
using either classify-only and classify+reconstruct objective functions. This performance was assessed 295 
on held-out images, not used in training the networks. 296 
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Fig. 2: Comparisons of selectivity for visual scene properties 297 

 298 
A) Category and position selectivity of single units recorded from macaque ventral stream (see Methods 299 
and Hong et al. 2016). B&C) Selectivity of units in the fully trained convolutional models optimized 300 
under classify-only objective (categorical cross-entropy) and the composite classify+reconstruct 301 
autoencoder objective. D&E) Non-convolutional or “all-to-all” models were also trained on both 302 
classify-only and classify+reconstruct. We measured property selectivity of both categorical and 303 
continuous valued category-orthogonal properties on units in the multi-electrode array data and each 304 
layer of the computational model encoders. We defined selectivity for categorical information on each 305 
unit in the dataset as the absolute value of that unit’s discriminability (one-vs-all d-prime). We defined 306 
selectivity for continuous valued attributes (horizontal and vertical position) on each unit as the absolute 307 
value of the Pearson correlation coefficient. Unit activities for models were sampled using 10000 held 308 
out test images to generate activations at each layer of the model. For layers containing more than 192 309 
units we randomly sampled 192 units for the analysis (to have a number of units similar to the number 310 
of IT units in the neural recordings).  311 
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Fig. 3: Noise generalization properties of models   312 

 313 
A) Additive gaussian noise (mean=0) was used to corrupt 10,000 testing images at increasing levels. B) 314 
Each model (defined its architecture – convolutional or non-convolutional -- and the objective on which 315 
it was trained) was evaluated on images corrupted with increasing levels of gaussian noise. We show the 316 
accuracy at categorizing the objects in the noise-corrupted images. These images were from a held-out 317 
dataset, not used in training the neural networks. C) Convolutional neural networks are more sensitive to 318 
noise than are non-convolutional ones; they show a larger decrease in accuracy with increasing noise 319 
variance. Adding a reconstruction component to the network objective reduces this sensitivity. Similar 320 
results were obtained with a multiplicative noise model (Fig. S2), indicating that this result is not 321 
sensitive to the specific type of noise that corrupts the images. 322 

  323 
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Supplemental 324 
 325 
Supplemental Fig. 1: Fisher combined probability test (FCT).  326 

 327 
We used the FCT to compute the likelihood of each model’s category and position selectivity matching 328 
the data observations made in monkey ventral stream recordings. Those likelihoods (p-values) are 329 
shown for each model. Higher p-values (taller bars) correspond to models that more closely match the 330 
neural data.  331 
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Supplemental Fig. 2: Noise generalization properties of models   332 

 333 
Each model (defined its architecture – convolutional or non-convolutional -- and the objective on which 334 
it was trained) was evaluated on images corrupted with increasing levels of noise. A) Additive gaussian 335 
noise (mean=0) was used to corrupt 10,000 testing images at increasing levels. B) Multiplicative 336 
uniform noise ) was used to corrupt 10,000 testing images at increasing levels. Bar plots show the 337 
accuracy of each neural network model at categorizing the objects in those noisy images. C) We show 338 
the deterioration in accuracy at each noise level, for each model. This comparison shows that the 339 
convolutional neural networks are more sensitive to noise but adding a reconstruction objective appears 340 
to improve this sensitivity.  341 


